2024年4月時点

事業戦略ビジョン

実施プロジェクト名:次世代グリーンパワー半導体に用いるSiCウェハ技術開発

実施者名:株式会社レゾナック、代表名:代表取締役 髙橋 秀仁

目次

1. 事業戦略・事業計画

- (1) 産業構造変化に対する認識
- (2) 市場のセグメント・ターゲット
- (3) 提供価値・ビジネスモデル
- (4) 経営資源・ポジショニング
- (5) 事業計画の全体像
- (6) 研究開発・設備投資・マーケティング計画
- (7) 資金計画

2. 研究開発計画

- (1) 研究開発目標
- (2) 研究開発内容
- (3) 実施スケジュール
- (4) 研究開発体制
- (5) 技術的優位性

3. イノベーション推進体制(経営のコミットメントを示すマネジメントシート)

- (1) 組織内の事業推進体制
- (2) マネジメントチェック項目① 経営者等の事業への関与
- (3) マネジメントチェック項目② 経営戦略における事業の位置づけ
- (4) マネジメントチェック項目③ 事業推進体制の確保

4. その他

(1) 想定されるリスク要因と対処方針

1. 事業戦略・事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識

カーボンニュートラル電化社会に向けた産業構造変化で高効率パワー半導体需要が増加

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

- あらゆる分野での電化・デジタル化が急速に進展する社会においては、 エネルギー消費の増大に伴うCO2排出量の増加が懸念される。
- パワー半導体は様々な電気機器で電力変換に使用されており、その効率を高めるとともに普及を促進することは、カーボンニュートラルの実現において極めて重要である。

(経済面)

・ パワー半導体の市場規模は、現在の約3兆円から'30年5兆円、'50年10兆円と大きく拡大する見込み。中でもSiC等の次世代パワー半導体の伸びは高く(現在0.09→'30年0.5→'50年3.7兆円:2022年推定)、高性能化、低コスト化の進展により更なる拡大が見込まれる。

(<u>政策面</u>)

• グリーン成長戦略にて半導体・情報通信産業は重要分野に選定され、 自動車・蓄電池産業、洋上風力産業等との連携を求められている。

(<u>技術面</u>)

- 次世代パワー半導体SiCは、Siに比べて高出力密度化、高周波動作に優れており、電力変換損失の大幅な低減が可能である。
- SiCパワー半導体の普及促進には、コストパフォーマンスの向上が不可欠であり、大口径化と欠陥密度等の改善が必要である。
- <u>市場機会</u>: SiCパワー半導体は各種電源回路を中心とした用途展開が進んでおり、加えてカーボンニュートラル社会の実現に向けて、電動車、産業機器、電力系統等幅広い分野での普及が見込まれており、2025年前後から市場拡大が急速に進む。
- <u>インパクト</u>: SiCパワー半導体の材料市場は、当社が世界最大のエピタキシャルウェハ 量産・外販メーカーとしてトップシェア(当社推定)を有しているものの、単結晶基板では 米国メーカーが圧倒的に優位な状況で、基板を含めた国内サプライチェーンの強化が 必要。

カーボンニュートラル社会における産業アーキテクチャ

脱炭素化電気と高効率パワー半導体で構成される電化社会の実現

出典) 経済産業省ホームページ https://www.meti.go.jp/press/2020/ 12/20201225012/20201225012-

(電化社会)

• デジタルインフラの増加、製造・輸送他あらゆる分野での電化の進展による電力需要増加とカーボンニュートラル実現の両立のために、脱炭素化電気供給・貯蔵と高効率電力変換機器で構成される。

(パワー半導体の役割)

- 発電から消費及びそれらをつなぐ電力変換機器に組み込まれるパワー 半導体は電力の利用効率を高めるキーデバイスである。
- 次世代パワー半導体SiCはその優れた物性により高効率化に有利であり、高品質化、低コスト化の進展が普及を加速させる。

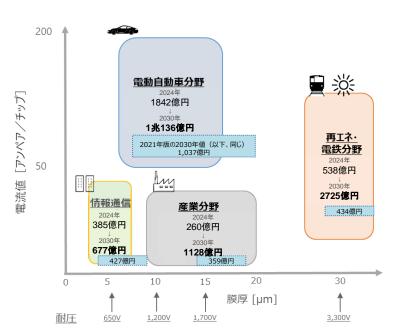
● 当社パーパス:

「化学の力で社会を変える」

先端材料パートナーとして時代が求める機能を創出し、 グローバル社会の持続可能な発展に貢献する。

→高品質パワー半導体SiCウェハ事業の拡大展開

1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット


パワー半導体市場のうち電動自動車/産業用途/再生エネ・電鉄分野をターゲットに設定

セグメント分析

当社の品質が活きる領域

- ・低転位、低欠陥、高均一性パワー半導体SiCウェハ
- →高信頼性、大電流/高電流密度、高耐圧デバイス用途がターゲット
- 中容量帯(1.2~1.7KV):電動車、高速EV充電機、各種産業機器
- 高容量帯(≧3.3KV): 電鉄、発電送電系統(風力、メガソーラー)

SiC パワーデバイス市場

出所: 富士経済2024年版 次世代パワーデバイス&パワエレ関連機器市場の現状と将来展望を元にレゾナックにて作成

ターゲットの概要

市場概要

カーボンニュートラルに向けて重要な電動車、産業機器、再エネ・電鉄に需要が将来拡大することが予想され、共通する想定ニーズは低欠陥、高信頼性、低価格である。

主な用途		想定ニーズ
電動 自動車	8インチエピ開発8インチ基板開発	 低欠陥 高信頼性 低価格
産業 機器	8インチエピ開発8インチ基板開発	低欠陷高信頼性低価格

再エネ・電鉄

- 厚膜8インチエピ開発
- 8インチ基板開発

- 低欠陥
- 高信頼性
- 低価格

^{*}SiCの各分野で採用拡大が進み、2030年時点のSiCパワーデバイス市場は2021年末想定よりも拡大すると見込む。

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル

SiC市場の需要拡大と8インチ移行を好機としてウェハビジネスモデルを変革、強化

社会・顧客に対する提供価値

- パワー半導体用大口径・高 品質SiCウェハ安定供給
 - -8インチ単結晶基板
 - :低転位、高フラットネス
 - -エピタキシャルウェハ
 - : 低欠陥、高均一性

[<u>デバイス</u>]

- 高耐圧大電流デバイスの高 歩留り化実現
- ウェハ専業メーカーとしての協業/技術協力強化

[システム]

- 電動自動車航続距離増加
- 産業機器高効率化
 - -データーセンター空調、電源
 - -太陽光発電パワコン
 - -電動車充電ステーション
- 高速鉄道省電力化
- 再生可能エネルギ効率向上
- 高電圧直流送電実現

[社会]

• カーボンニュートラルへの寄与

ビジネスモデルの概要(製品、サービス、価値提供・収益化の方法)と研究開発計画の関係性

ウェハ(当社)

デバイス(顧客)

[現在]

6インチウェハ事業

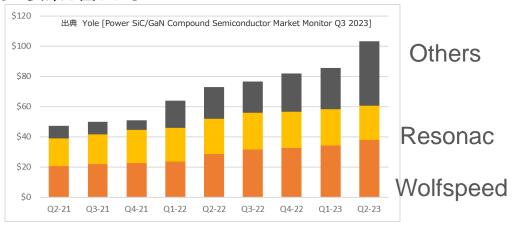
- ・外部調達基板を含むマルチソースの基板 + エピタキシャルウェハ
- ·耐圧600V~3.3KV

[今後] 8インチウェハ事業

・内製基板も含めたマルチソースの基板 + エピタキシャルウェハ

- ・ウェハ専業メーカーとしてデバイスメーカー全方位展開
- ・高性能指向メーカーへ高品質エピウェハを提供
- ・高品質内製基板+エピでの歩留り向上効果顕現
- ・ウェハ専業メーカーポジション維持
- ・高品質8インチ基板開発→サプライチェーン強化

SiCパワー半導体市場の拡大と8インチ市場への移行を好機としてウェハ事業の拡大強化を実現


- (**市場機会**) 高効率SiCパワー半導体の用途展開進展とカーボンニュートラルに向けた需要の高まりによる 2020年代中盤からの高品質大口径8インチウェハの市場立上りに対応
- (製品品質) 6インチ市場最高品質である単結晶基板と低欠陥高均一性エピウェハ製造技術の高度化による高品質8インチウェハを提供。新たな低コスト化技術開発追加による普及促進
- (<u>市場ポジション</u>) 高性能市場指向のデバイスメーカーへのウェハ供給を軸とした優位性強化。ウェハ専業メーカーポジション維持による垂直統合型競合メーカーとの差別化
- (<u>サプライチェーン</u>) 海外メーカーの寡占状態である単結晶基板市場に対して新規8インチウェハの開発、量産により、自社のウェハ事業展開及び国内SiCパワー半導体サプライチェーンの強靭化に寄与
- (販売戦略) 安定供給体制提供。計画的な投資の実現

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル(標準化の取組等)

標準化の動きを注視し、必要に応じて是正措置を行う

標準化を活用した事業化戦略(標準化戦略)の取組方針・考え方

- オープンエピウェハ市場において、国内外の多くのデバイスメーカーと 既に個別仕様を締結済
- →要求品質は各デバイスメーカーごとに異なっており、標準化に適さ ない要素も含まれる

最終的にカスタマーとサプライヤー間との調整に委ねられている標準 規格については注視し、必要に応じて是正措置を行う

国内外の動向・自社の取組状況

(国内外の標準化や規制の動向)

• 各社ともカスタマーとサプライヤー間とで取り交わした個別仕様を基本にして ビジネスを進めている

(これまでの自社による標準化、知財、規制対応等に関する取組)

• 知財戦略:積極的な知財権利化

(2.(2)知財優位性について、をご参照ください。)

SiCアライアンス:標準化WGに参画

- IEC:標準化活動に参画。各顧客との仕様に考え方を取り込む

- SEMI:メンバーとして参画

本事業期間におけるオープン戦略(標準化等)またはクローズ戦略(知財等)の具体的な取組内容(※推進体制については、3.(1)組織内の事業推進体制に記載)

標準化戦略

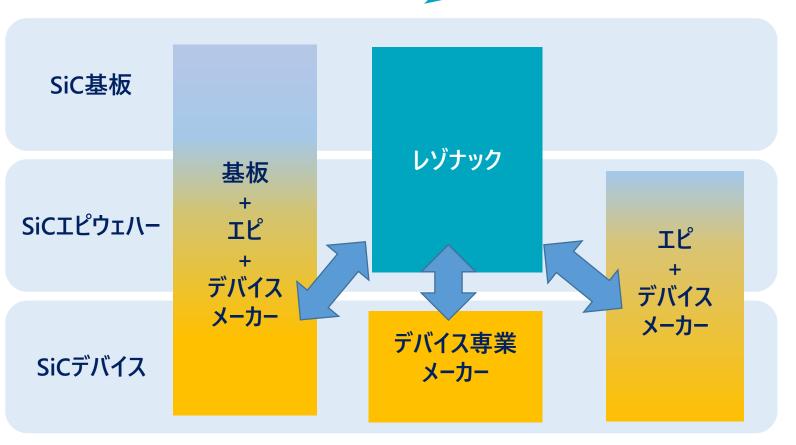
カスタマーとサプライヤー間の個別仕様を基本にしながら、IECや SEMI等による動きを注視する

知財戦略/ノウハウ戦略

• 適切に特許出願による権利確保を行うと共に、ノウハウ登録を行うことで技術の蓄積を図る

	環クロ	・エピウェハTAM伸び大 (情報:顧客forecast、Yoleレポート等)		・Si-IGBTの高性能化進展 ・GaN、Ga2O3等、新規材料の実用化進展 ・ブロック経済化の加速によるサプライチェーンの分断	
外部環境分析	業界	・高速鉄道・EVなどの新アプリケーション → EVの普及が加速 ・産業機器・電源・充電柱等のフルSiC化 ・日本政府のSiCパワー半導体に対する補助拡充	・デバイスおよび基板専業メーカーの内製エピ進出、 基板・インゴットメーカーの囲い込み		
境 分 析	競合	・デバイスまで垂直統合する各社に対し、デバイス顧客にとっ ては、エピ専業であるレゾナックのポジションは魅力	・WS社等欧米各社、中国勢の大規模投資加速。 それに対する各国補助金の更なる増額。 ・一部用途における品質キャッチアップ		
	顧客	・内製基板を有するエピウェハメーカーを選択する ・車載向け高品質基板を必要とする ・要求品質の高度化・分化がなされる 機会	脅威	・顧客における基板およびエピ内製化の進展	
内	・サ製品ビス	・基板およびエピの品質優位性 ・特にエピについて殆どのオープン顧客で認定済 ・顧客要望に対する迅速・丁寧なレスポンス ・6インチ品質優位性と評価技術あり	弱み	・海外競合が補助金により大規模投資を継続、コスト ダウンを進展させていることに対して、遅れの懸念	
境	プ ロ業 セ務 ス	・装置の使いこなしによる高い生産性 ・グリーンイノベーション基金による開発体制強化		・機器および主要部材の納期の長期化が定着	
17 1	資経源営	・グロ−バルシェアを持つHD事業の組織・人財シナジ− ・基板からエピまでの一貫製造		・人材不足・雇用難(製造・技術・マーケティング・ 建設/立上)	

基板・エピウェハー専業メーカーというビジネスモデル


レゾナックは SiCデバイスの設計に合わせた デザインが可能

顧客との**技術のすり合わせ**を行い、 共創して価値を創造

SiCエピウェハー (左: 150mm、右: 200mm)

デバイス事業で競合しない 共創パートナー

1. 事業戦略・事業計画/(4)経営資源・ポジショニング

高品質化技術と高市場シェアエピウェハの強みを活かして、高品質8インチウェハを安定供給

自社の強み、弱み(経営資源)

ターゲットに対する提供価値

- ・高耐圧大電流デバイスの高歩留り化、低コスト化を実現する高品質8インチ単結晶基板、エピウェハ
- '26年:現6インチ市場最高品質製品同等
- '29年:ウェハ欠陥密度1/10
- ・次世代グリーンパワーデバイスの普及促進を大幅 に加速する不連続な低コスト化技術製品
- ・市場成長を支える安定生産能力の確保

自社の強み

- ・高性能デバイス市場での高いエピウェハシェア
- ・6インチ高品質内製基板
- ・ウェハ専業メーカーとしての対顧客(デバイスメーカー)

ポジション優位性

- ・ノウハウ秘匿化
- ・充実したIPポートフォリオ

自社の弱み及び対応

- ・デバイス性能視点でのウェハ品質解析
- → 主要デバイスメーカーとの技術コラボによる 対応力強化

他社に対する比較優位性

技術

自社

- 高結晶性6インチ 単結晶基板
- 低欠陥高均一性6インチエピウェハ

将来

現在

- 超高品質8インチ 単結晶基板
- 超高品質8インチェ ピウェハ

サプライチェーン

- 外部調達基板を 含むマルチソースの 基板
- エピウェハ販売

- 内製基板も含む マルチ基板ソース
- エピウェハ販売

その他経営資源

- HDメディア事業
- 化合物半導体 ウェハ事業
- 半導体ガス事業

関連事業とのコラボ レーション: CMPス ラリー、モジュール部 材

競合

- バリューチェーンの上 流部(基板/エピ/ デバイス)の全方位 展開や垂直統合の 動き
- コア技術の国外移転に慎重
- 開発・量産体制構築への各種補助金制度によるサポートが大規模化

1. 事業戦略・事業計画/(5) 事業計画の全体像

研究開発の後、'28年頃より先行事業へ寄与が始まり、
'36年度に次世代技術によりGI基金目標の品質・コストを両立する製品出荷を想定

投資計画

✓ ′28年頃より当社先行事業へ寄与が始まる。
 ✓ ユーザーのリクワイアメントを前提に、継続的な研究開発や投資を予定。
 – 2022
 – 2023
 – 2024
 – 2025
 – 2026
 – 2030
 – 2035

	ı						`		只 = 小心4人111111111111111111111111111111111111
	2022 年度	2023 年度	2024 年度	2025 年度	2026 年度	•••	2030 年度	• • •	2035 年度
売上高						に、市場		て生産性改善	ノイアメントを前提 活動の実行及び 大する。
研究開発費		Ý	勺110億円	(本事業の	の支援期間)			提に、継続	クワイアメントを前 的な研究開発を 予定
取組の段階	研究開発			社会!	実装·事業化				
●昇華法による8インチ高品質・低コストSiCウェ ハ製造技術開発②8インチ高品質・低コストSiCエピウェハ製造技 術開発③昇華法による8インチ超高品質・低コストのSiC	研究開発			社会:	実装·事業化				
	研究開発				社	会実装·事業	化		
ウェハ及びエピウェハ製造技術開発 ②高速昇華法技術の開発	研究開発						社会§	実装・事業化 →	
CO2削減効果* (百万トン)							1.5	•••	2.2

^{*}SiCウェハ普及が直接的にCO2削減につながりませんが、参考値としてお示しします。

1. 事業戦略・事業計画/(6)研究開発・設備投資・マーケティング計画

高品質化技術とユニークな市場ポジションの継続的な強化により社会実装計画を推進

研究開発:実証

設備投資

マーケティング

取組方針

- 高品質低コスト8インチウェハ開発
 - 昇華法単結晶成長技術
 - 低材料口ス高平坦度基板加工技術
 - 低欠陥高均一性エピウェハ成膜技術
- エピウェハ製造工程自動化ライン構築
 - 品質安定化、省力化/コストダウン
- 高速バルク結晶成長技術開発
 - 低コスト8インチバルク結晶成長技術
- 8インチウェハ性能検証
 - 複数国内デバイスメーカーとの連携

- 「高速昇華法 | 要素技術開発

進捗状況

国際競争

上の

優位性

- 8インチエピの成膜試験を実施し、膜厚均一性や
- 高温化に必要な要素を検討し、新規の昇華炉の 設計に反映させた

- 8インチウェハ開発装置
 - 大型昇華法バルク結晶成長装置
 - 大口径単結晶基板加丁装置
 - 大型高速エピタキシャル成膜装置
- エピウェハ製造自動化ライン
 - 白社HDメディア製造技術応用、最適化
 - 非接触式検査、目視検査代替装置等
- 高速バルク結晶成長装置
 - 高速昇華炉(成長条件検討炉)
 - →8インチバルク結晶開発炉
 - PI技術*)関連物性評価装置 *)PI: プロセスインフォマティクス
- 新規メーカーも含めて製作能力や実績について幅広 くヒアリングし、将来の量産を念頭にしたメーカーおよ び機器選定、発注を行っている
- メーカーでのデモを実施し、機器能力の実態把握を 継続している

- タイムリーな事業化時期決定、PR
 - デバイスメーカー連携により、市場の大口 径化動向を先行把握
 - 学会発表、プレスリリース等アナウンス
- デバイスメーカーへの的確な品質情報提供
 - 高性能デバイス設計への反映
 - デバイスメーカーの競争力強化
- デバイスメーカー品質情報/要求事項の的確な把握
 - 直販体制によるデバイスメーカーとの直接対話
 - 普及促進のための具体的施策提案

8インチまで拡大する過程で、品質の悪化を把握

- 欠陥密度に関しては制御パラメータを把握している

- レゾナックの現行事業および国際会議等の学会を通 してデバイスメーカーニーズと技術動向を確認している
- レゾナックのコーポレートマーケティング部、電動車関 連素材事業と積極的に連携し、業界・デバイスメー カー・技術動向を把握している

6インチ内製基板使用ウェハ品質優付性

- 高性能デバイス歩留り向上により実証済み
- 先進的研究成果を持つ委託先との連携
 - 高速昇華法:産業技術総合研究所
- SiCウェハに関わる充実したIPポートフォリオ

- 昇華法単結晶成長技術の独自性
 - 6インチ炉内部構造設計技術展開
 - プロセスインフォマティクス技術の適用
- 高速成長装置開発
 - 高速昇華炉は装置そのものが 開発対象で優位性の源泉

- 単結晶基板及びエピウェハを保有
 - ウェハ専業メーカー
 - エピウェハの高いグローバルシェア
 - デバイスメーカーと深い技術交流を実施
- ウェハ品質に関する豊富な蓄積技術
 - 単結晶基板及びエピウェハの欠陥評価、12 デバイスキラー欠陥同定技術を保有

1. 事業戦略・事業計画/レゾナックグループにおけるSiC事業の位置づけ

レゾナックグループはEBITDAマージン20%を目指しています。
SiC事業は有望市場で将来の成長に繋がる優位ポジションにあり、
EBITDAマージン30%以上を実現しうる事業として【次世代事業】に位置付けています。

SiC事業の増産投資の一部は、経済安全保障推進法に基づく供給確保計画の認定を得て実行しています。

ポートフォリオ戦略に即した開示セグメント EBITDAマージン					
新開示セグメント	サブセグメント			(2025年目標)	
半導体·電子材料	半導体材料(前工程·後工程)	デバイスソリューション(HD)	デパイスソリューション(SiC)	30%以上	
モビリティ	自動車部品	リチウムイオン電池材料		20%以上	
イノベーション材料	セラミックス 機能性	:化学品(樹脂など) アルミ機	能部材 コーティング材料	15%以上	
ケミカル	石油化学	化学品	黑鉛電極	15%以上	
その他	ライフサイエンス	I		クリティカルマス実現	
事業のポートフォリオ属性 ■ コア成長事業 ■ 基盤事業(技術・素材) ■ 安定収益事業 ■ 次世代事業					

1. 事業戦略・事業計画/社内・開発拠点内のコラボレーション

レゾナック デバイスソリューション事業部内にてGI基金事業を行っております。 レゾナックの主要製品であるハードディスクメディアは外販世界No.1です。 SiCエピウェハーとは製品や顧客とのコラボレーションにおいて類似性があり、ハードディスクメディアにおける先行事例 を積極的に取り入れ、SiC事業及びGI基金事業の推進を行っております。

1. 事業戦略・事業計画/レゾナックによるSiC基板・エピウェハー量産実績

RESONAC

SiCパワー半導体向け 150mm(6インチ)単結晶基板の量産を開始

(2022年3月28日プレスリリース)

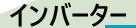
左;成形したインゴット

右;基板

複数のお客様にレゾナック製6インチ(150mm)SiC単結晶基板を使用したSiCエピウェハーが採用されたことを受け、レゾナックは国内初となるSiC単結晶基板の本格出荷を開始しました。

200mm(8インチ)SiCエピウェハーのサンプル出荷を開始 ~自社製SiC単結晶基板を活用、SiCパワー半導体の普及・拡大に貢献~

(2022年9月7日プレスリリース)


左;150mm基板 右;200mm基板

自社製SiC単結晶基板を活用した200mm(8インチ)SiCエピウェハーのサンプル出荷を開始し、デバイスメーカーニーズの探索を行っております。

*従来の6インチ品並みの品質です。

1. 事業戦略・事業計画/レゾナックのSiC基板・エピウェハー 実用化実績

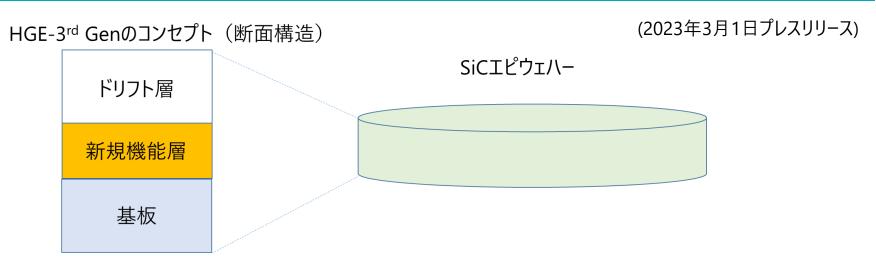
パワー半導体用SiCエピウェハーがデンソー製インバーターに採用 ~トヨタ自動車の新型電動車LEXUS「RZ」に搭載~

コンバーター

(2023年3月31日プレスリリース)

パワー半導体用SiCエピウェハーがデンソー製 燃料電池自動車向け次 期型昇圧用パワーモジュールに採用

FCVバスなど


(2020年12月10日プレスリリース)

様々な電動車タイプで採用が進んでおり、用途も拡がっております。
今後、電気自動車への採用が加速し、更なる需要拡大が期待されます。

1. 事業戦略・事業計画/更なる高性能化に向けた取り組み

ハイグレードSiCエピウェハー(HGE)第3世代品を開発、量産を開始 <u>~世界最高水準の品質のエピウェハー供給により、高出力と省スペースを両</u>立する次世代パワー半導体の実用化に貢献~

- ・低結晶欠陥(低BPD)基板
- ・高いBPD⇒TEDコンバージョン
- ・基板に存在するBPDが拡張することを防止

将来の高電流密度化に対応

SiC基板中に存在する欠陥が拡張することを防げるかどうかが、技術的な課題でした。今回レゾナックは、HGE 2nd Genの技術をベースに新規機能層を追加することで立体的な欠陥抑制を実現、新構造のエピタキシャル技術を用いることでこの課題を解決し、第3世代のハイグレードエピウェハーとして量産を開始しました。

1. 事業戦略・事業計画/レゾナックのSiC取組に対する外部からの評価

「2022年日経優秀製品・サービス賞 最優秀賞」 を受賞

(2023年1月4日プレスリリース)

炭化ケイ素単結晶基板「SiC単結晶基板」 国内で初めて6インチ(150mm)のSiC単結晶基板の量産を開始

株式会社レゾナック(社長:髙橋 秀仁)の6インチ (150mm)SiC単結晶基板が、「2022年日経優秀製品・サービス賞 最優秀賞」を受賞しました。

レゾナックはSiCパワー半導体に不可欠なSiCエピタキシャルウェハー(以下、SiCエピウェハー)の量産を2009年に始めました。特性均一性、低欠陥密度などの優れた品質が国内外のデバイスメーカーから高い評価を得て、当社はSiCエピウェハーで外版メーカートップの世界シェアを有しています。今回「2022年日経優秀製品・サービス賞 最優秀賞」を受賞した6インチSiC単結晶基板は、SiCエピウェハーの主材料です。SiCエピウェハーの品質向上や安定供給体制の構築を目的に、レゾナックは昨年、国内で初めて量産を開始しました。

SiCパワー半導体は、従来のシリコンウェハーを用いたパワー半導体に比べ、電力損失や熱の発生が少なく、省エネルギーに貢献するデパイスとして注目され、とくに電気自動車(EV)や再生可能エネルギー分野などの各種産業用途での需要が急拡大しています。レゾナックグループは「共創型化学会社」として、グローバル社会の持続可能な発展への貢献をめざし、エネルギー効率化を実現するSiCエピウェハーを次世代事業と位置付けて注力しています。なお、当社は2022年9月に自社製SiC

単結晶基板を使用した200mm SiCエピウェハーのサンプル出荷を開始しております。また、さらなる高品質化に向けてグリーンイノベーション基金事業にて研究開発を進めております。今後も、"ベスト・イン・クラス"をモットーに、高性能で高い信頼性の製品を供給することで、SiCパワー半導体の普及に貢献していきます。

日本経済新聞社ホームページ

https://www.nikkei.com/edit/news/special/newpro/2022/index.html

救針ホームペーミ

https://www.resonac.com/jp/news/2023/01/04/2283.html

「半導体・オブ・ザ・イヤ-2023 半導体用電子材料部門 優秀賞」 を受賞

(電子デバイス産業新聞主催、2023年5月25日受賞)

ハイグレードSiCエピウェハー第3世代品を開発、 量産を開始

■半導体用電子材料部門

優秀賞

レゾナック

SICハイグレードエビ第3世代品を開発、量産を開始

産経タイムズホームページ https://www.sangyo-times.jp/seminarDtl.aspx?ID=515

※「半導体・オブ・ザ・イヤー」は二度目の受賞 2014年グランプリ 「パワー半導体用SiCエピウェハー6インチ品」

1. 事業戦略・事業計画/(7)資金計画

国の支援に加えて、本事業期間後も継続して設備投資等を実施する予定

資金調達方針 2035 2022 2023 2024 2025 2026 2030 . . . 年度 年度 年度 年度 年度 年度 年度 委託 2/3補助 1/2補助 事業全体の資金需要 約110億円 ユーザーのリクワイアメ ントを前提に、 うち研究開発投資 約110億円 ・継続的な研究開発 を予定。 ·社会実装計画実行 国費負担※ に当たっては市場環 約90億円 (委託及び補助) 境を踏まえた設備投 資を適時行う予定。 約20億円 自己負担

2. 研究開発計画

2. 研究開発計画/(1) 研究開発目標

高品質低コスト8インチウェハ開発とシェア拡大を達成するために多段階のKPIを設定

研究開発内容

次世代グリーンパワー半導体に 用いるSiCウェハ技術開発

アウトプット目標

- 1) 高品質8インチSiCウェハ 〈現市場最高品質6インチウェハ同等品質〉
- 2) 超高品質8インチSiCウェハ <欠陥密度1/10>
- 3) 高品質8インチバルク単結晶高速成長技術 く現行昇華法成長速度を大きく超える>

研究開発項目

- 1 昇華法による8インチ高 品質・低コストSiCウェ 八製造技術開発
- 2 8インチ高品質・低コ ストSiCエピウェハ製 造技術開発
- 3 昇華法による8インチ超 高品質・低コストのSiC ウェハ及びエピウェハ製 造技術開発
- 4 高速昇華法技術の 開発

KPI

- ・欠陥密度を現市場最高品質6インチウェハ同等
- ・デバイス収率を6インチと同等
- ・欠陥密度および均一性を現市場最高品質6イン チウェハ同等
- ・検査頻度の適正化
- ・デバイス収率を6インチと同等
- ・欠陥密度および均一性を現市場最高品質6イン チウェハ同等以上
- ・加工工程材料口ス低減
- ・デバイス収率を6インチと同等以上
- ・現行昇華法を大きく超える成長速度

KPI設定の考え方

2026年度:

・現在の市場最高品質6インチウェハ同等の8インチウェハを開発し、デバイスメーカーでの8インチウェハを用いたデバイス開発への提供と市場立上りに備える。

2029年度:

- ・更なる高品質化、低コスト化による国際競争力強 化、ウェハ市場シェア拡大に繋げる。
- ・デバイステーマ目標に寄与するウェハパラメータ改善 -チップサイズ(大電流化):転位、欠陥、エピ構造
- ・昇華法の弱点である成長速度の改善による低コスト化技術として普及加速に寄与。
- ・低コスト品上市で2040年半導体・情報通信産業のカーボンニュートラルを目指す。

2. 研究開発計画/(2)研究開発内容(全体像)

社会実装実現の高確率化、段階的なKPI実現のために解決方法を多元化

昇華法による 8インチ高品 質・低コスト SiCウェハ製造 技術開発

KPI

- ・欠陥密度を現市場最高 品質6インチウェハ同等
- ・デバイス収率を6インチと 同等
- 8インチ高品 質・低コスト SiCエピウェハ 製造技術開 発
- ・欠陥密度および均一性 を現市場最高品質6イン チウェハ同等
- ・検査頻度の適正化
- ・デバイス収率を6インチと 同等
- 昇華法による 8インチ超高 品質・低コスト のSiCウェハ及 びエピウェハ製 造技術開発
- ・欠陥密度および均一性 を現市場最高品質6イ ンチウェハ同等以上
- ·加工工程材料口ス低減
- ・デバイス収率を6インチと 同等以上
- 高速昇華法 技術の開発
- ・現行昇華法を大きく超え る成長速度

現状 6インチ ·基板TRL8 ・エピTRL9 階 (TRL5)

達成レベル

′26年 ′30年 (TRL9)

8インチウェハ 個別プロセス 技術検討段

(TRL6)

解決方法

• 6インチ市場最高品質のバルク結晶成 長技術及びエピタキシャル成長技術を ベースにシミュレーション技術を含めたそ れぞれの高度化により8インチウェハの 早期開発を行う。

- 低転位化、低欠陥化のための装置設 計、プロセス開発へのプロセスインフォマ ティクス技術の適用、材料ロス低減と 高精度化が可能な加工技術の開発、 エピウェハ製造プロセスの自動化ライン 構築を行う。
- 開発8インチウェハの性能評価のために 複数のデバイスメーカーでの検証を行う。

実現可能性 (成功確率)

(90%)

(80%)

高速昇華 法:成長炉 検討段階 (TRL4)

′26年 (TRL5) ′30年 (TRL6)

′26年

′30年

(TRL6)

(TRL8)

要素技術実証とコスト試算により量産 技術としてのポテンシャル検証を'25年 度までに完了。当該分野で実績を有 する研究機関との協業で実施する。

(70%)

2. 研究開発計画/(2) 研究開発内容(これまでの取組)

各KPIの目標達成に向けた個別の研究開発の進捗度

台NPIの日保建成に凹のた凹がが用光の進沙皮 						
研究開発内容	直近のマイルストーン		これまでの(前回からの)開発進捗	進捗度		
1 昇華法による8 インチ高品質・ 低コストSiCウェ 八製造技術開 発	 ・8インチシードから8インチインゴット結晶を作製し、品質の改善を図る ・プロセスインフォマティクスに用いる技術を選定し、データ採取を進め、検証を進める ・8インチ結晶を加工可能な装置を選定し導入完了 ・研究開発に必要な装置を設置するためのライン整備完了 		 ・自社技術のコンセプトを量産条件検討用装置に応用したことで、 早期に8インチ結晶を実現。さらに、プロセスインフォマティクスのデータを活用し、調整を加えたことで、結晶欠陥の品質向上を図ることができた。 ・加工装置の導入とライン整備完了。新しいCMP技術によるテスト結果として、6インチ量産品同等の品質が得られた。 	0		
2 8インチ高品 質・低コスト SiCエピウェハ製 造技術開発	・8インチウェハへの成膜を行い、高均一性と低欠陥化に対する課題を抽出・水銀を使用しないキャリア濃度測定方法について技術を選定し検証を進める・マニュアルハンドリング工程を削減する自動化ライン検討して試作し、課題を把握		 ・8インチエピの成膜試験において、新規構造での成膜試験を実施し、低欠陥を維持しながら均一性をさらに向上させることができた。 ・水銀を使用しない濃度測定方法について、技術を選定し、導入完了。量産性の検証を開始。 ・自動化ラインの検討を行い、試作機を制作し、課題を把握中 	0		
3 昇華法による8イン チ超高品質・低コス トのSiCウェハ及びエ ピウェハ製造技術開 発	・超高品質化検討用昇華炉を検討・導入して、制御要素の影響について抽出を進める ・材料ロスを低減する技術について検討し、関連する装置を選定し、導入完了		・加工工程の材料ロスの低減開発用レーザー照射後剥離装置を 年度内に設置完了。装置メーカにおけるデモによって、剥離安定 性を含めた課題を把握した。	Ο		
4 高速昇華法技 術の開発	・結晶成長の高速化領域における4H-SiC 結晶成長 条件(高ガス濃度、多形安定性)を探索し、高速化と 多形安定化の両立条件を見極めを継続 ・小口径において従来技術と比較し、課題を抽出		・4H多形安定かつ高速成長を両立する条件・構造・部材について 探索し、新たな異種多形発生モードを抑制するパラメータを見出し た。産総研にて新規の昇華炉を設置完了。 ・小口径において、4H多形安定かつ高速成長の両立を達成した。	0		

また転位の変化が従来技術と同等であることを確認した。

2. 研究開発計画/(2) 研究開発内容(今後の取組)

個別の研究開発における技術課題と解決の見通し

研究開発内容

昇華法による8

インチ高品質・

低コストSiCウェ

八製造技術開

発

直近のマイルストーン

- ・8インチシードから8インチインゴット結晶を作製し、品質の改善を図る
- ・プロセスインフォマティクスに用いる技術を選定し、データ 採取を進め、検証を進める
- ・8インチ結晶を加工可能な装置を選定し導入完了
- ・研究開発に必要な装置を設置するためのライン整備 完了
- 2 8インチ高品 質・低コスト SiCエピウェハ製 造技術開発
- ・8インチウェハへの成膜を行い、高均一性と低欠陥化に対する課題を抽出
- ・水銀を使用しないキャリア濃度測定方法について技術を選定し検証を進める
- ・マニュアルハンドリング工程を削減する自動化ライン検 討して試作し、課題を把握
- 昇華法による8イン
 ・超高品質化検討用昇華炉を検討・導入して、制御
 チ超高品質・低コストのSiCウェハ及びエ
 サのSiCウェハ及びエ
 - ・材料ロスを低減する技術について検討し、関連する装置を選定し、導入完了
- 4 高速昇華法技 術の開発

ピウェハ製造技術開

- ・結晶成長の高速化領域における4H-SiC 結晶成長 条件(高ガス濃度、多形安定性)を探索し、高速化と 多形安定化の両立条件を見極めを継続
- ・小口径において従来技術と比較し、課題を抽出

残された技術課題

(マイルストーンに対しては特に無し)

・加工工程における各装置の検証継続

解決の見通し

・導入前のデモを含めた事前検証の結果 においては、加工工程の各装置に大きな 課題は無い

・新しい欠陥分類装置を用いて、欠陥品

算科学を用いた取組を活用可能

照合しながら検証を継続する

質改善の方向性を見出す。DX等の計

導入した装置とサンプルなどをデモ結果と

- (マイルストーンに対しては特に無し)
- ・基準以下で突発的に発生する欠陥
- ・水銀を使用しないキャリア濃度測定 装置と自動搬送テスト機の量産工 程における検証継続

(マイルストーンに対しては特に無し)

- ・材料ロスを低減する技術と量産装置としての完成度
- ・装置メーカーにおけるデモ結果との比較と、 稼働上の更なる工夫や最適化を進める

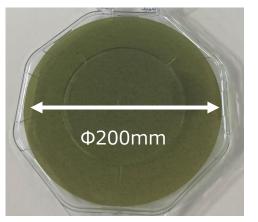
- (マイルストーンに対しては特に無し)
- ・大口径化に際しての4H多形安定 性のスケールパラメータの把握
- ・新たな異種多形発生モードを抑制できる パラメータを抽出できている。産総研に設 置した装置も用いて開発を加速できる見 通し。

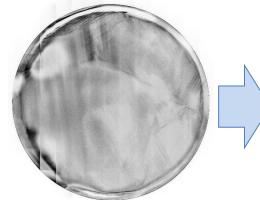
2. 研究開発計画/(2) 研究開発内容/ 詳細説明

- ●昇華法による8インチ高品質・低コストSiCウェハ製造技術開発 (結晶成長)
- 母昇華法による8インチ超高品質・低コストのSiCウェハ及びエピウェハ製造技術開発 (結晶成長)

8インチ化取り組み

量産条件検討用結晶成長装置における 8インチ基板取り組み


8インチ基板の作製


8インチ基板の評価

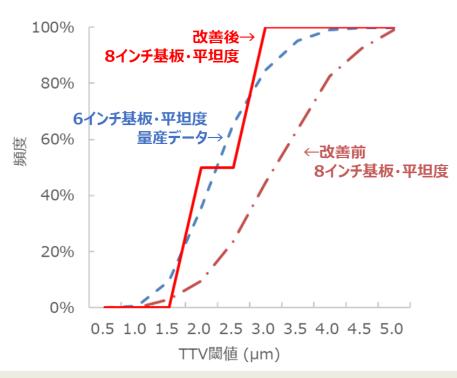
品質改善の結果 8インチ基板の評価 量産条件検討用8インチ炉を用いた 成長試験を実施

透過X線トポ写真

透過X線 トポ写真

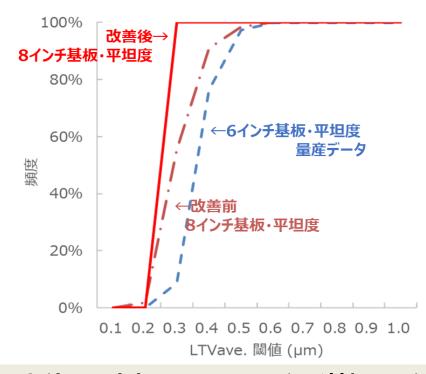
既存技術を用いた8インチ基板と、 同等の品質と成長速度に到達

MPやインクルージョンの発生を抑制。 外周部に歪領域あり


MPやインクルージョン の発生を抑制したまま、 外周部の歪を低減

2. 研究開発計画/(2) 研究開発内容/ 詳細説明

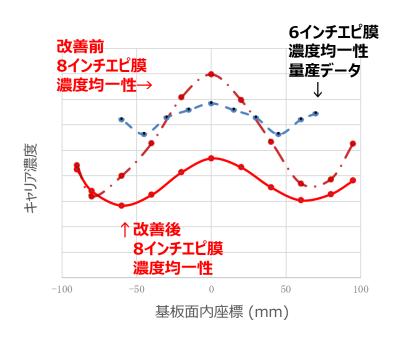
- ●昇華法による8インチ高品質・低コストSiCウェハ製造技術開発 (加工)
- 母昇華法による8インチ超高品質・低コストのSiCウェハ及びエピウェハ製造技術開発 (加工)


平坦度[TTV(GBIR)、LTV(SFQR)]の改善

平坦度(TTV)改善累積度数の変化

8インチ基板の平坦度は、6インチ基板量産品に対して若干劣っていたが、開発した加工技術を適用することで、同等レベルまで改善が期待できる

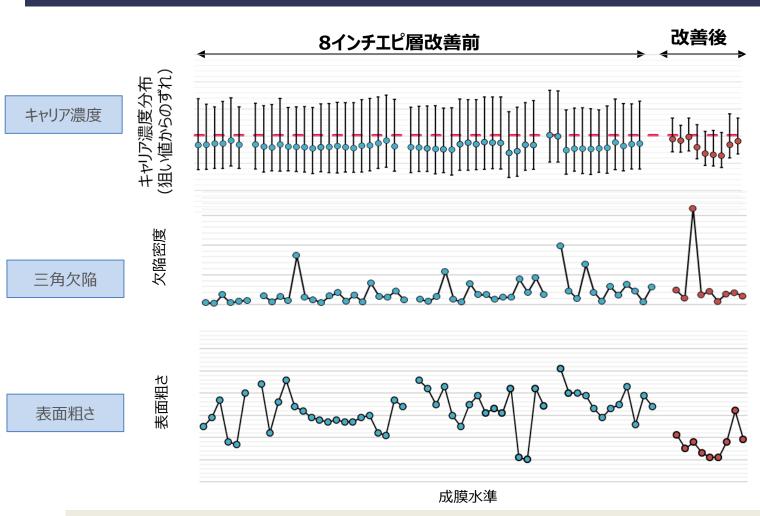
平坦度(LTV)改善累積度数の変化


LTV(サイトフラットネス)について、8インチ基板は6インチ基板 量産同等以上であり、開発した加工技術を適用することで、更 なる改善が期待できる

2. 研究開発計画/(2)研究開発内容/

- 28インチ高品質・低コストSiCエピウェハ製造技術開発 (エピ)3昇華法による8インチ超高品質・低コストのSiCウェハ及びエピウェハ製造技術開発 (エピ)

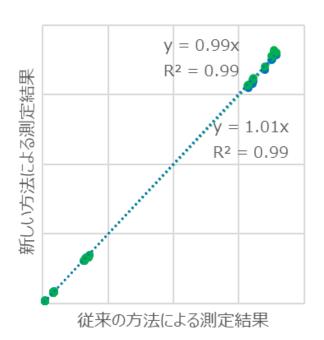
8インチ エピ開発 キャリア濃度


均一性の向上試験の結果

8インチ基板上に成膜した エピ膜のキャリア濃度の面内分布

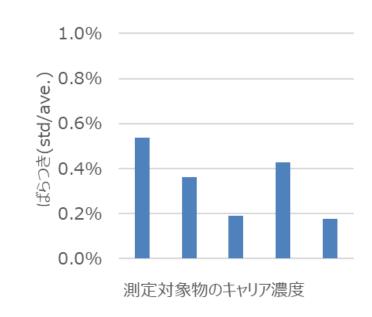
- ・新規部材適用によりキャリア濃度分布を改善
- ・ばらつきを半減させ、6インチ量産レベル同等 まで近づけた

キャリア濃度、三角欠陥、表面粗さの繰り返し試験の結果


いすれの項目も条件の見直しにより改善され、再現性も良好な結果が得られた

2. 研究開発計画/(2) 研究開発内容/ 詳細説明

- ❷8インチ高品質・低コストSiCエピウェハ製造技術開発 (エピ)
- ❸昇華法による8インチ超高品質・低コストのSiCウェハ及びエピウェハ製造技術開発 (エピ)


水銀を使用しないキャリア濃度測定方法の検討

従来の測定方法との比較

水銀を用いない装置を選定し、設置完了。測定値の相関に問題は無し。

水銀を使用しないキャリア濃度測定方法の 短期間における測定再現性の確認

繰り返し測定から求めたバラつきは、 1%未満であり、良好と判断。

量産ラインへの適用を想定した スループットの比較

測定装置	電荷チャージ 回数	25枚分 測定時間
従来の方法 (Hg使用)	-	2.5 時間
 新しい方法	6回	2.3 時間
(Hg不使用)	12回	4.3 時間

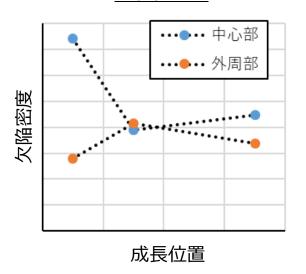
新しい測定方法で用いている電荷チャージの回数を抑えた場合、水銀を用いた測定と同等のスループットに収まった。

電荷チャージによるエピ表面状態の変化によって、 測定の精度に影響を与えることも把握した。

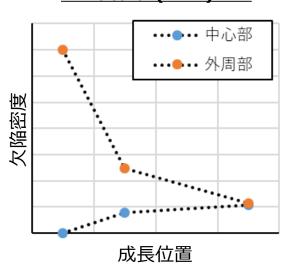
2. 研究開発計画/(2) 研究開発内容/ 詳細説明

4 バルク結晶高速成長技術開発

異種ポリタイプ変換抑制


実験水準	成長速度 (mm/h)	パラメータ	4Hからの 多形変換
1	2.7	29	あり
2	2.8	24	あり
3	3.0	25	あり
4	3.1	23	なし

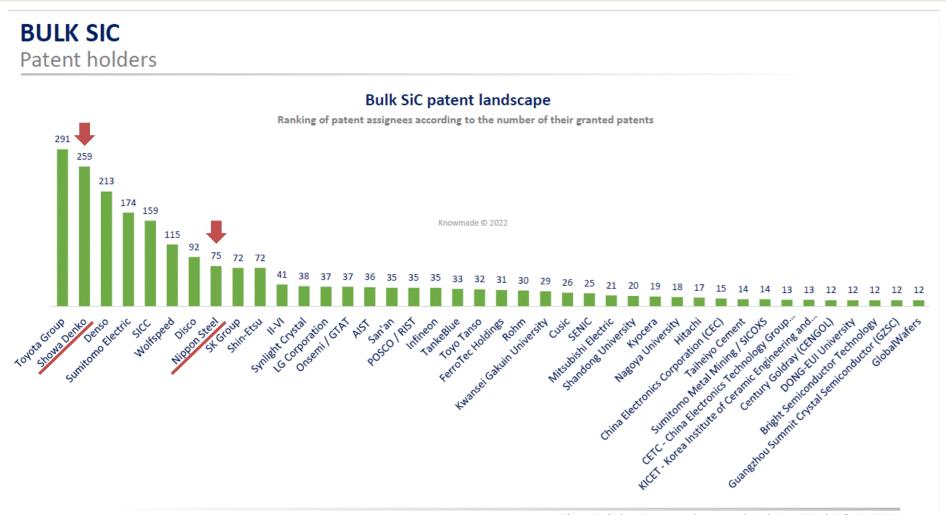
多形混入を抑制するパラメータを抽出し、関係を実験的に見出した。


成長速度と独立に制御が可能であり、4Hからの多形変換抑制に目途付けできた。

小口径における高速成長の検証

全転位密度

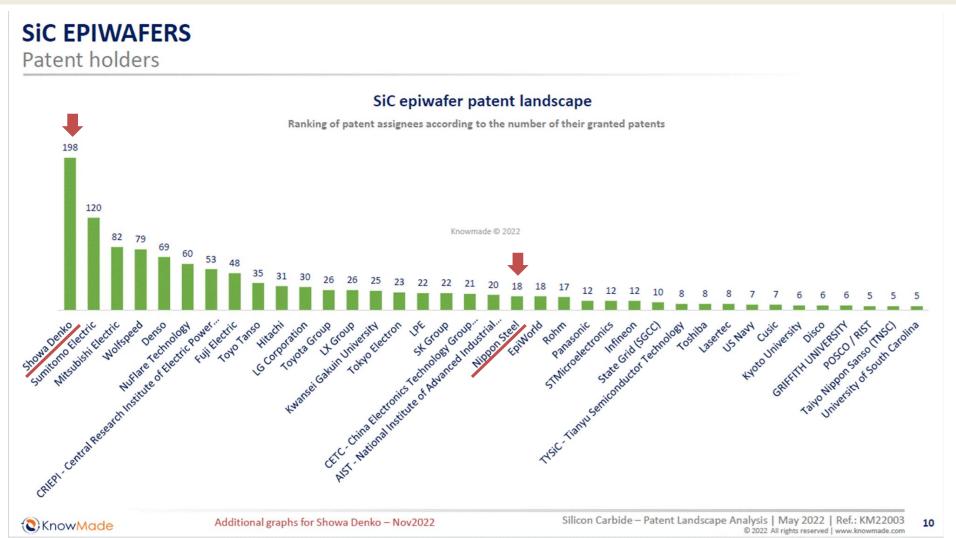
基底面転位(BPD)密度



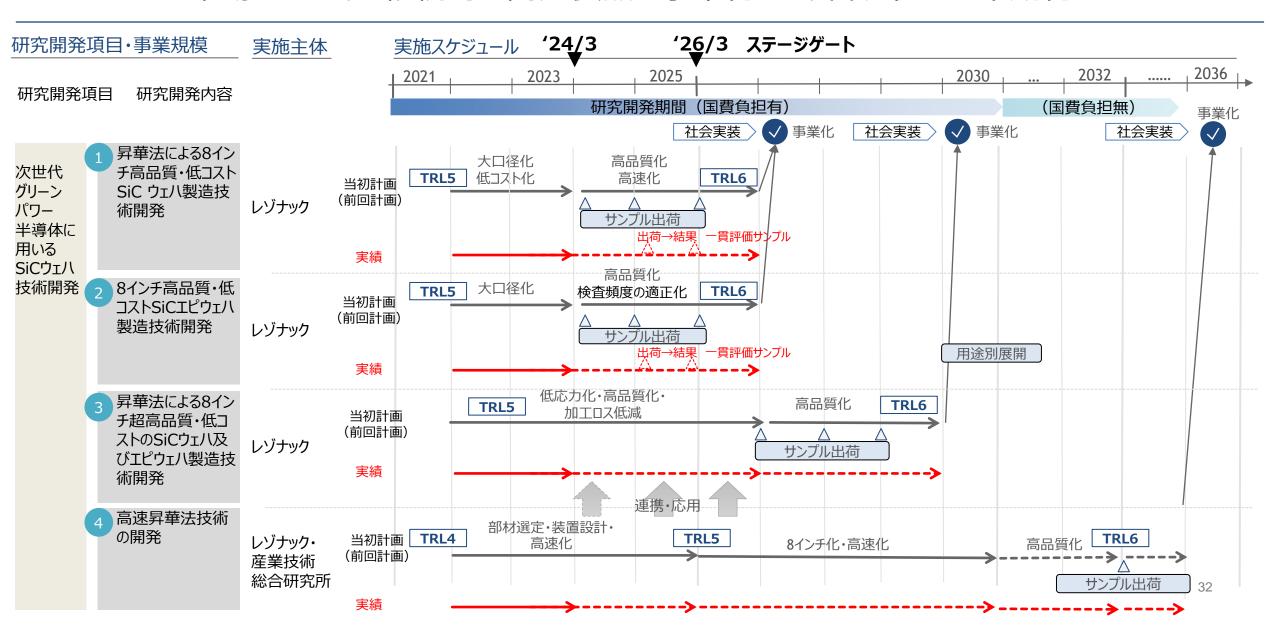
成長方向に対する転位密度の変化が、 従来の昇華法と同様であることを確認できた。

2. 研究開発計画/(2) 研究開発内容/ 補足

知財優位性について (SiC基板に関する特許保有数)


仏KnowMade社(特許と科学的情報の分析に特化した調査/コンサルティング会社)の2022年5月報告からも、レゾナックの優位性は顕著。 レゾナックは、【Showa Denko(昭和電工)+Nippon Steel(新日鐵)[譲受]】に相当。

2. 研究開発計画/(2) 研究開発内容/ 補足


知財優位性について (SiCエピウェハに関する特許保有数)

仏KnowMade社(特許と科学的情報の分析に特化した調査/コンサルティング会社)の2022年5月報告からも、レゾナックの優位性は顕著。 レゾナックは、【Showa Denko(昭和電工)+Nippon Steel(新日鐵)_{[譲受}]】に相当。

2. 研究開発計画/(3) 実施スケジュール

8インチウェハ市場の立上りと継続的な開発製品の事業化により普及促進を早期化

2. 研究開発計画/(4) 研究開発体制

ウェハ事業会社と公的研究開発機関の保有技術を活かした効率的な役割分担を構築

実施体制図

研究開発内容

次世代グリーンパワー半導体に用いる SiCウェハ技術開発

株式会社レゾナック

- ●昇華法による8インチ高品質・低コストSiCウェハ製造技術開発
- 28インチ高品質・低コストSiCエピウェハ製造技術開発
- ❸昇華法による8インチ超高品質・低コストのSiCウェハ及びエピウェハ製造技術開発
- ●高速昇華法技術の開発

<委託先> 産業技術総合研究所 (産総研)

●高速昇華法技術の開発

各主体の役割と連携方法

各主体の役割

- ▶ 研究開発項目全体の取りまとめは、レゾナックが実施する。
- ▶ レゾナックは、各研究開発内容について以下を担当する。
 - 研究開発内容❶・②・③:自社が保有する6インチ高品質単結晶基板及 び高品質エピタキシャルウェハ製造技術の高度化により目標を達成する。
 - 研究開発内容④:委託先との連携成果について生産技術としてのポテンシャル評価を行い、事業後期の社会実装に向けた技術開発に取組む。
- ▶ 産総研は、研究開発内容④のテーマ「高速昇華法」を担当する。また、関連部 材メーカー、装置メーカーと連携する。

研究開発における連携方法

- → 研究開発項目全体:各主体間の連携効率化のために定期的な検討会を開催し、取組み内容の継続的な見直しを行う。また、複数のデバイスメーカーとの連携によるデバイス評価(ウェハ開発による改善効果確認)を行う。
- ▶ 研究開発内容④:事業前半での活動は産総研を主な研究実施場所としてレ ゾナックメンバーが常駐する。
- → 研究開発内容④(事業後半): レゾナックを主な研究実施場所とし、委託先との連携を継続する。

2. 研究開発計画/(5)技術的優位性

国際競争力強化に活用可能な研究開発内容に関する技術優位性を保有

研究開発内容

研究開発項目

活用可能众技術等

競合他社に対する優位性・リスク

次世代グリー ンパワー半導 体に用いる SiCウェハ技 術開発

- 昇華法による8イ ンチ高品質・低コ ストSiC ウェハ製 造技術開発
- 8インチ高品質・ 低コストSiCエピ ウェハ製造技術 開発
- 昇華法による8イ ンチ超高品質・低 コストのSiCウェハ 及びエピウェハ製 造技術開発

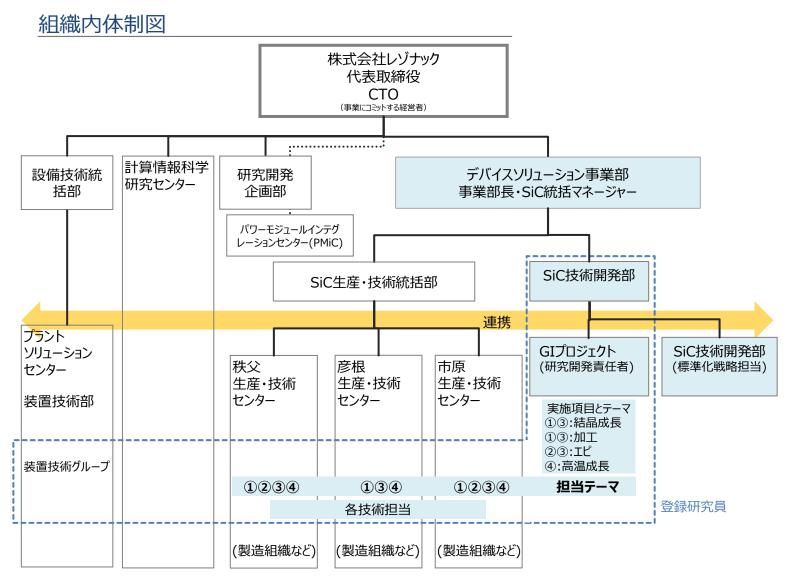
【株式会社レゾナック】

- 高品質6インチ基板・エピ製造技術
 - -シード改質、低欠陥成長
 - -高精度基板加工、高品質エピ成膜
 - -複数顧客からの工程認定取得済
- エピのサンプルワークからのフィードバック
- 牛産能力と販売シェア、技術開発力と事 業構築力、量産自動ライン設計技術
- 充実したIPポートフォリオ:自社出願に加→・ え譲受・許諾を含む。基板は1998年か ら、エピは2005年からの継続した取組。

- →・ 品質優位性により、デバイスメーカーにおける収
- →・ 製造ラインと品質保証を含めた体制を構築済み
- 自社技術により先行させた8インチ基板・→・8インチ必要とされる品質要素を把握
- ・ HD外販メーカーとして世界トップレベルの →・ SiCに適した自動化・量産ラインの構築技術。 大規模化する補助金制度によるサポートは脅威
 - SiCにおけるパイオニアの一翼でもあり、知財面か らの懸念は低減している

高速昇華法 技術の開発

【上記に加え、産業技術総合研究所】


- 産総研の結晶成長・材料・物性制 御・解析・装置・プロセス工学等の連 携開発などの知見
- →・ 昇華法の基礎研究から大型化、欠陥制御、導 電性制御等の技術開発に30年にわたる技術 蓄積があり、高速昇華法開発に応用可能。
 - 大口径結晶の高速成長を実現可能とする熱環 境の安定創出と炉部材の繰り返し使用が課題。34

3. イノベーション推進体制

(経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、SiCウェハ事業を所管するデバイスソリューション事業部にて事業を推進する。

組織内の役割分担

研究開発責任者と担当部署

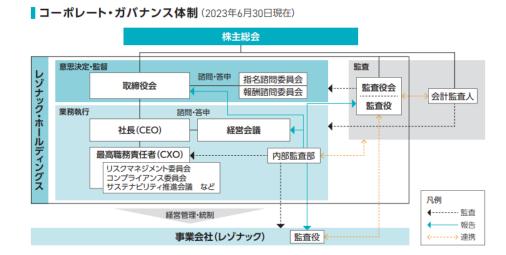
- 研究開発責任者
 - GIプロジェクトリーダー: SiC研究開発の統括
- 担当チーム
 - 各生産・技術センター横断でテーマ (研究開発項目)毎にメンバーを編成
- テーマリーダー
 - リーダーA:結晶成長の研究開発の実績
 - リーダーB:加工技術開発の実績
 - リーダーC: エピウェハ製品開発の実績
 - リーダーD:結晶成長の研究開発の実績
- 社会実装/標準化戦略担当
 - SiC技術開発部長 (併任)

部門間の連携方法

各月・週の各種会議体にて連携実施

<委託先>

委託先と、研究開発責任者及び担当者にて定期進捗 管理を実施。

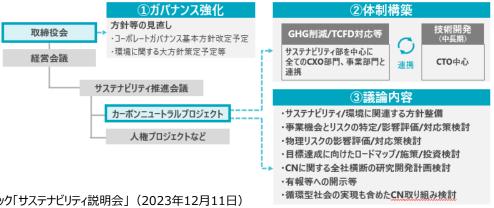

36

3. イノベーション推進体制/(2)マネジメントチェック項目① 経営者等の事業への関与

経営者等による本基金事業への関与の方針

経営者等による具体的な施策・活動方針

- 本基金事業応募に当たっては、レゾナック社長直下の会議体にて意思決定を行い、取締役会での報告を行った。
- 採択結果についてはレゾナック社長直下の経営会議及び取締役会で報告を行った。
- SiCウェハ事業はデバイスソリューション事業部に属し、事業部長が当事業を執行している。
- 毎年実施される事業計画ローリングを経営会議メンバーが審議を行っている。この場を通して、 SiCウェハ事業の成長戦略、事業課題、研究開発テーマを経営陣と共有し、全社の中での位置づけを明確化している。
- 取締役会にSiCウェハ事業執行報告を定期的に実施している。 また、社外取締役から研究開発・技術分野の取り組みに対する執行状況確認を受けている。
- レゾナック経営組織規程にて業務分掌を定めており、必要に応じて適切な部署から本事業に対するサポートを得ている。


出典) レゾナックホームページより抜粋 https://www.resonac.com/jp/corporate/governance.html

3. イノベーション推進体制/(3) マネジメントチェック項目② 経営戦略における事業の位置づけ

経営戦略の中核にサステナビリティを位置づけ、企業価値向上とステークホルダーとの対話を推進

(1) 取締役会等コーポレート・ガバナンスとの関係

- サステナビリティ推進体制
- 当社のパーパスに基づき「化学の力で社会を変える」ために、経営の根幹にサステナビリティ の概念を据えている。2024年1月に最高サステナビリティ責任者(CSuO)を新設し、執 行体制を強化している。
- 取締役会への報告や報酬への組み込みを含めたガバナンス体制も強化中である。
- カーボンニュートラルへの取組ついては、経営会議直下のサステナビリティ推進会議で立案し、 CXOが審議している。またサステナビリティ推進会議の下部にカーボンニュートラル・プロジェク トを設置し、組織横断でGHG排出量削減の施策の検討を進めている。
- カーボンニュートラルに向けた全計戦略
- 当社は、各種製品の製造工程で化石原燃料を使用しており、温室効果ガス(以下、 GHG)を排出する一方、省エネルギー・炭素循環に貢献する製品も数多く有していること から、気候変動への対応はリスク・機会の両面より重要な経営課題と捉え、2019年5月 に「気候関連財務情報開示タスクフォース」(TCFD)に賛同した。気候変動が当社に及 ぼすリスクと機会を評価し、シナリオ分析の内容を踏まえた取り組みを通じてレジリエンスを 強化するとともに、TCFDのフレームワークに基づいた情報開示を進めステークホルダーとの対 話を推進している。

(2) ステークホルダーとの対話、情報開示

- ●企業価値向上に関する情報開示 ステークホルダーとの関わり | レゾナック (resonac.com)
- マテリアリティ「イノベーションと事業を通じた競争力の向上と社会的価値の創造しへの取り組み。
- 社会課題の発見から技術開発、新たなビジネスモデルを通じたソリューションの提供という一連のプ ロセス、および共創を通じたイニシアチブの発揮による事業を通じて社会的価値を創出することを目 標として本マテリアリティを設定している。本マテリアリティはさまざまな産業の起点である化学メー カーとしての直接的かつ間接的な社会および環境価値を創出していくことを示している。マテリアリ ティにはKPIを設定し、進捗状況を開示していく。
- レゾナック・ホールディングスに対するESG観点での社外・ステークホルダーからの評価
- ESG指数への組み入れ状況(2023年7月現在。レゾナック・ホールディングスとして上場)

FTSE4Good Global Index

FTSE Blossom Japan Index

FTSE Blossom Japan Sector Relative Index

MSCI女性活躍指数(WIN)

S&P/JPXカーボン・エフィシェント指数

SNAMサステナビリティ・インデックス

- 認証状況('23年7月現在)

健康経営優良法人

くるみん

- その他

日経統合報告書アワード2023でグランプリS賞を受賞

●グリーンイノベーション基金事業における公表方針

レゾナックはSiCウェハ事業を有望市場で将来の成長に繋がる優位ポジションにある【次世代事業】 に位置付けている。本基金事業はレゾナックのSiCウェハ事業の研究開発テーマとして実施される。 レゾナックのSiCウェハ事業の一環として公表可能な情報は、プレスリリースなどを通して積極的に伝 えている。本事業の採択時(2022年5月23日)にプレスリリースを実施しただけでなく、各種プレスリ リースや事業説明時に本基金事業への取組を言及した。

3. イノベーション推進体制/(4)マネジメントチェック項目③事業推進体制の確保

機動的に経営資源を投入し、社会実装、企業価値向上に繋ぐ組織体制を整備

デバイスソリューション事業部における事業推進体制

- 本基金事業はレゾナックのデバイスソリューション事業部傘下のSiCウェ八事業の研究開発テーマとして実施される。レゾナックのSiCウェ八事業は、1998年から実施された超低損失プロジェクトにおけるSiC基板、2005年の有限責任事業組合エシキャット・ジャパンのSiCエピを源流として、20年以上の研究開発および事業運営実績を有している。
- 国内外のパワー半導体メーカーとの取引実績があり、SiCエピウェハ外販市場のシェアは業界首位と推定している。
- 既に存在する事業部内開発体制や開発ノウハウ、取引チャネルなどのリソースを最大限活用することで、本基金事業の成果物の社会実装を推進する。
- デバイスソリューション事業部内での定期開催会議体にて本事業への経営資源の 投入方針決定、進捗管理、執行管理を実施する。

レゾナックにおける全社部門との連携

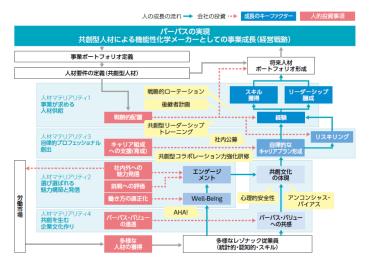
研究開発部門・・本事業の遂行にあたり全社研究開発リソースからサポートを得る。

- 研究開発企画部 レゾナックが有する多様な技術、事業領域を踏まえた、全社研究開発の円滑な運営がミッション。
- 計算情報科学研究センター 計算科学および技術情報調査による全社の研究開発支援が主なミッション。 本事業で目指す高温物性値測定、炉内状態モニタリング、シミュレーションの高精度化をサポート する。

生産技術部門 ・・本事業による工程開発や機器開発においてサポートを得る。

設備技術統括部プラントソリューションセンター
 各種技術分野に関する化学工学、計算科学、装置技術、材料技術、エンジニアリング技術(設計、施工)とその連携による最適ソリューションの提供および研究開発各部門とのコンカレントエンジニアリングによる開発成果早期顕現がミッション。

本事業で目指す機器開発、自動化工程開発をサポートする。


レゾナックにおける人材戦略と教育機会の提供

- ・企業・事業戦略と人材戦略を合致させることが、レゾナックの人的資本経営である。
- ・長期ビジョンの目指す姿の実現に向け、創造的に課題を解決する「共創型人材の創出」「企業文化の醸成」こそが人材戦略の根幹であり、レゾナックの価値の源泉であると位置づけている。

・従業員一人ひとりが、自分にあったキャリアを通して、成 長実感を得ることができる組 織を目指している。

「自身のキャリア観を通じたパーパス・バリューの自分ごと化」「多様なキャリア開発・能力開発ニーズに応える学習機会の提供」「多様な社員が互いの専門性を知り活用するきっかけとなる場づくり」を重視し、人材育成施策を実施している。

4. その他

4. その他/(1) 想定されるリスク要因と対処方針

リスクに対して十分な対策を講じるが、情勢変化等の事態に陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

R&Dリスク

- 設定したマイルストーン・KPIに未到達。技術開発遅延
- レゾナック研究開発部や生産技術部が有する開発・生産技術の知見導入による開発推進
- レゾナック計算情報科学研究センターの人材と知見を 活用したシミュレーション高度化
- 高度な開発実績を有する委託先(産総研)との コラボレーションによる開発推進
- 開発技術の陳腐化リスク
- 本案件は国際的な開発競争に晒されており、計画通り最速のスケジュールで開発→社会実装を着実に進めることにより、本邦製造業の国際競争力を強化
- 他社の特許等の知的財産権への抵触
- レゾナック知的財産部と協働による特許監視、特許網(基本 特許、重要特許)の構築 -

社会実装(経済社会)におけるリスクと対応

市場リスク

- 別材料によるパワー半導体生産や革新的な他のプロセスの確立
- 牛産規模や社会実装時期等の再検討
- セグメンテーション、ターゲッティング、ポジショニングの棲み 分けによる事業規模の再検討
- · SiCウェハの需給バランスの大幅な変化
- 生産規模や社会実装時期等の再検討
- セグメンテーション、ターゲッティング、ポジショニングの棲み 分けによる事業規模の再検討

事業リスク

- 機器調達や資材調達の遅延(納期遅延、作業遅延等)
- 発注窓口であるレゾナック購買・SCM部門との連携強化
- 協力会社とのコミュニケーション円滑化・効率化
- サプライチェーンの複線化の推進

社会リスク

- 人口減少・高齢化を背景とした労働者不足の顕在化
- 採用窓口であるレゾナック人事部門との連携強化
- 労働環境や待遇の改善による人材確保の推進
- 自動化の推進

\Q

その他(自然災害等)のリスクと対応

災害リスク

- 自然災害(地震・津波等)による設備破損等のリスク
- 事前のアセスメント等により対応
- 感染症等のパンデミック拡大による、開発・実装遅延リスク
- 全体スケジュールの再調整も含め検討

その他のリスク(システム等)

- ネットワークウイルス等によるコンピューターシステムの 休止
- 情報セキュリティ規定順守によるオペレーション管理の 徹底
- セキュリティ機能強化による機密情報漏洩対策の徹底

● 事業中止の判断基準:

- ・別材料によるパワー半導体生産や革新的な他のプロセスが確立され、本事業の社会実装採算性が折り合わないことが明らかとなった場合
- ・大規模震災等の自然災害により、当事業の継続が困難となった場合
- ・現時点で想定されないような経営環境変化により、レゾナックが事業継続できなくなった場合