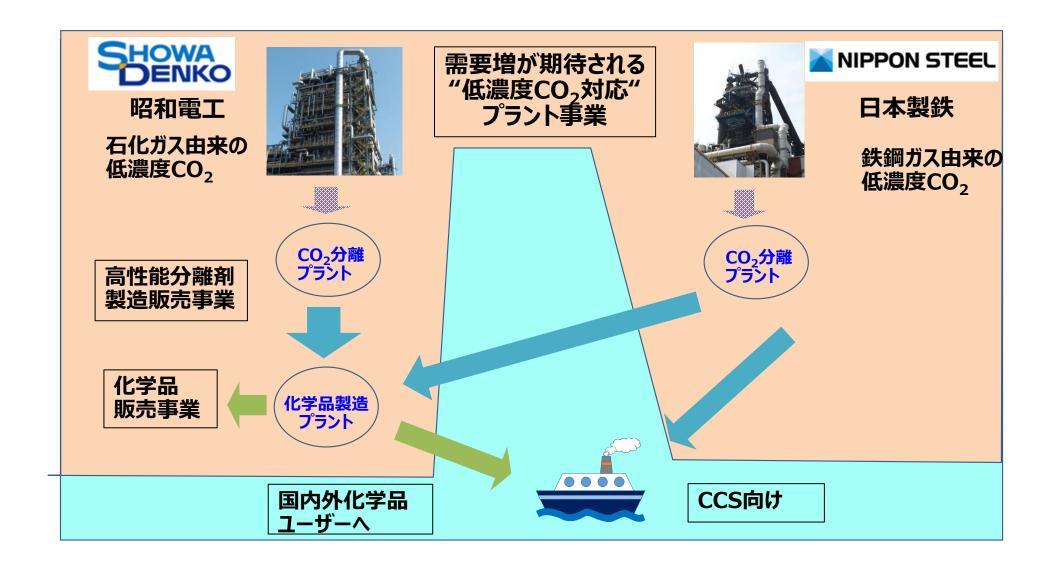
事業戦略ビジョン

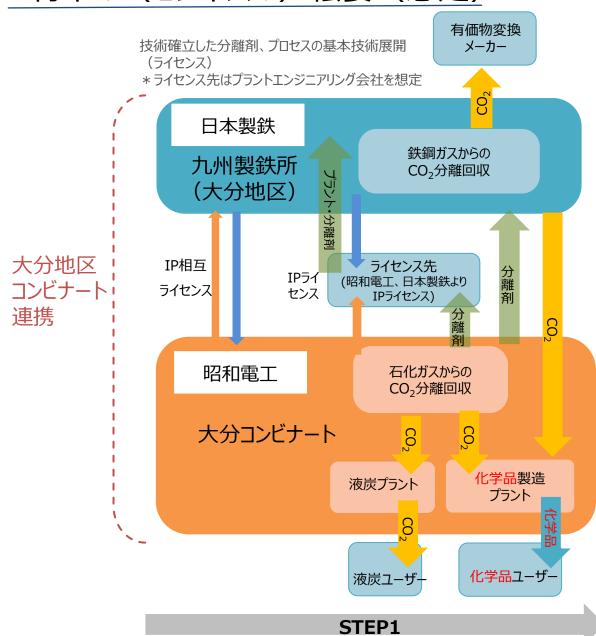
実施プロジェクト名 革新的分離剤による低濃度CO₂分離システムの開発

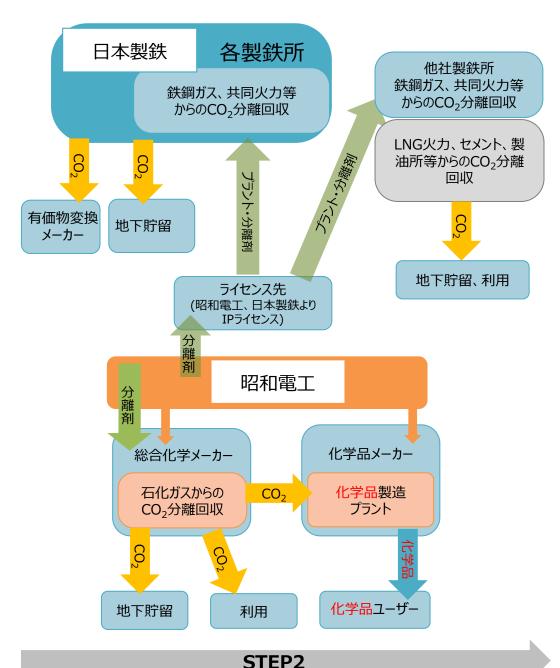
実施者名:**日本製鉄株式会社**、代表名: **代表取締役社長 橋本 英二**

(共同実施者:昭和電工株式会社)


0. コンソーシアム内における各主体の役割分担

- 1. 事業戦略・事業計画
 - (1) 産業構造変化に対する認識
 - (2) 市場のセグメント・ターゲット
 - (3) 提供価値・ビジネスモデル
 - (4) 経営資源・ポジショニング
 - (5) 事業計画の全体像
 - (6) 研究開発・設備投資・マーケティング計画
 - (7) 資金計画
- 2. 研究開発計画
 - (1) 研究開発目標
 - (2) 研究開発内容
 - (3) 実施スケジュール
 - (4) 研究開発体制
 - (5) 技術的優位性
- 3. イノベーション推進体制(経営のコミットメントを示すマネジメントシート)
 - (1) 組織内の事業推進体制
 - (2) マネジメントチェック項目① 経営者等の事業への関与
 - (3) マネジメントチェック項目② 経営戦略における事業の位置づけ
 - (4) マネジメントチェック項目③ 事業推進体制の確保
- 4. その他
 - (1) 想定されるリスク要因と対処方針


目次


0. コンソーシアム内における各主体の役割分担

CO₂分離回収~化学品製造 社会実装イメージ

0. コンソーシアム内における各主体の役割分担将来の(ビジネスの)絵姿(想定)

昭和電工株式会社

研究開発の実施内容

- 分離剤改良
- プロセス開発
- 分離剤量産技術開発
- CO₂分離パイロットプラントによる実証
- 化学品パイロットプラントによる実証

社会実装に向けた取組内容

- CO。分離プラント建設・石化排ガス分離回収
- ・ 化学品プラント建設・化学品製造・販売
- CO₂分離プラント販売、吸着剤製造販売

日本製鉄株式会社

研究開発の実施内容

- 分離剤改良
- プロセス開発
- CO₂分離パイロットプラントによる実証

社会実装に向けた取組内容

- 技術確立した分離剤、プロセスの基本技術展開(ライセンス)
 - * ライセンス先はプラントエンジニアリング 会社を想定

「国内のGHG排出量の削減」、ならびに「世界に展開可能な"CO2分離プラント事業"、 "分離剤事業"、化石原料に依存しないCO2を利用した"ケミカル事業"の創出」の実現

1. 事業戦略・事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識

2050年カーボンニュートラル実現のため、超革新的技術にチャレンジし、世界の鉄鋼業をリード

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

・鉄鋼業は、資源・エネルギー・土木・建築等のインフラ分野や、自動車、電機電子・造船等の製造業等のあらゆる産業の基盤の役割を果たしている。

(経済面)

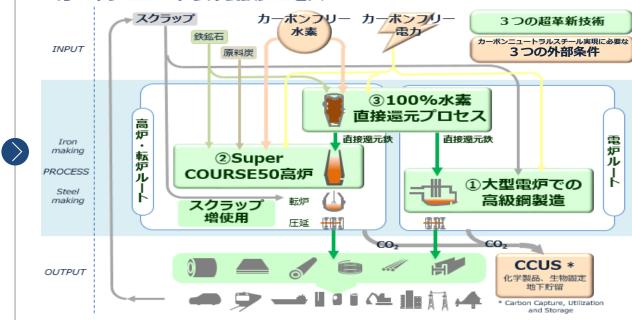
- ・2050年のカーボンニュートラル社会においても、鉄鋼は、電動車向けの電磁鋼板や洋上 風力のモノパイル等にも利用されるなど、脱炭素化製品に必要不可欠な素材の一つである。
- ・IEAの見通しにおいても、2050年断面において、自動車や各インフラ、電子電気機器等で大きな需要が見込まれている。

(政策面)

- ・製鉄プロセスの脱炭素化に向けた技術開発は世界各国でも行われており、日本以外の多くの海外鉄鋼メーカーも2050年カーボンニュートラルを宣言し、脱炭素化に向けた世界的技術開発競争が進められている。
- ・我が国鉄鋼業の国際競争力を確保していくには、世界に先駆けて製鉄プロセスにおける 脱炭素化技術を開発し、「グリーンスチール」を実現することが不可欠となる。

(技術面)

- ・現行の高炉法は、エネルギー効率、生産効率、生産品質、原料条件の面で優れている一方で、コークス(石炭)を用いて還元する過程で不可避的にCO2が発生する。
- ・そのため、鉄鋼業におけるカーボンニュートラル実現のためには、原料や還元材において 化石燃料から脱却するという、製鉄プロセスそのものの抜本的な転換が求められている。


● 市場機会:

IEAは、製造工程のCO2排出量が実質ゼロである「グリーンスチール」の市場が、 2050年時点で約5億トンとの予測 (2070年にはほぼグリーンスチールに代替) 。 本市場を獲得するためには、日本鉄鋼業が水素還元製鉄等の超革新技術を世界に 先駆けて確立することが不可欠。

● 社会・顧客・国民等に与えるインパクト: 我が国鉄鋼業が、他国に先駆けてカーボンニュートラル製造プロセスを開発・実機化することにより、産業基盤として世界をリードし、グリーンスチール市場化をいち早く実現。

カーボンニュートラル社会における産業アーキテクチャ

カーボンニュートラル製鉄プロセス

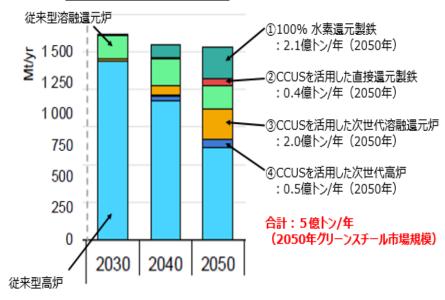
● <u>当該変化に対する経営ビジョン</u>:

「日本製鉄カーボンニュートラルビジョン2050」 を掲げ、経営の最重要課題として、2050年カーボンニュートラルの実現にチャレンジ

〔2030年ターゲット〕CO2総排出量 ▽30%の実現〔2050年ビジョン〕カーボンニュートラルを目指す

NIPPON STEEL

Green Transformation
initiative


1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット

世界に先駆けてグリーンスチールを開発し、日本鉄鋼業が技術的にけん引していくことが必要

セグメント分析

- ・IEAは、製造工程のCO2排出量が実質ゼロである 「グリーンスチール」の市場が、2050年時点で約5億トン との予測(2070年にはほぼグリーンスチールに代替)
- ・本市場を獲得するためには、**日本鉄鋼業が水素還元** 製鉄等の超革新技術を世界に先駆けて確立することが 不可欠

製造法別銑鉄生産量見通し



(出典) IEA Energy Technology Perspectives 2020

CCUSではCO2分離回収技術が必要

ターゲットの概要

- ・鉄鋼は、資源・エネルギー・土木・建築分野や、 自動車向けのハイテン・電磁鋼板(EV等のモーター で使用)・洋上風力の構造体等にも利用され、 カーボンニュートラル社会においても、 引き続き、必要不可欠な素材である
- ・IEAの見通しにおいても、2050年断面で、 自動車や電子電機機器、各インフラ等で 大きな需要が見込まれている

(出典) Iron and Steel Technology Roadmap (2020IEA)※ STEPS:公表済み政策シナリオ、SDS: 持続発展シナリオ

分野

分野動向 と 当社対応の方向性

自動車

2030年台半ば迄に乗用車新車販売を100%電動車化、2050年ライフサイクル 全体でのCO2排出ゼロ等の目標実現に向け、エコカーの生産量拡大が見込まれる。

→ハイテン材(車体の軽量化に寄与)、電磁鋼板の供給・性能向上により 省CO2に貢献

電子電機 機器

電化促進に向け、省エネを実現するデバイス・機器(高効率モーター、省エネ家電等) 関連での需要拡大が見込まれる。

→電磁鋼板(高効率モーターで使用)の供給・性能向上により省CO2に貢献

各インフラ

2050年のカーボンニュートラルに向けたグリーン成長戦略に基づき、今後、再生可能エネルギー(洋上風力発電等)、次世代燃料(水素等)等での急激な需要増が見込まれる。

→再生可能エネルギー分野での洋上風力の構造部材向け、次世代燃料分野での 製造-輸送-貯蔵-利用の広範囲に渡る需要に対し、高機能材を提供し貢献

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル

カーボンニュートラル製造プロセスの研究開発・実装により、鋼材市場のグリーンスチール化に対応

社会・顧客に対する提供価値

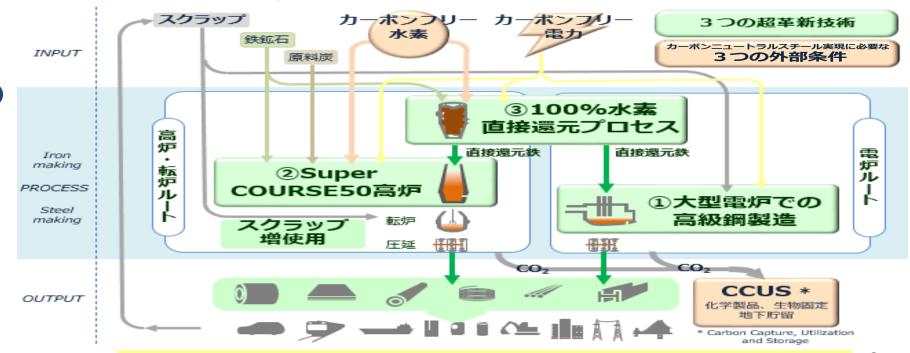
「3つのエコ」

① eco PROCESS 「事業活動の全段階における 環境負荷の低減」

事業活動全段階において、更なる環境 保全、資源・エネルギー効率の向上、 社内外の廃棄物削減とリサイクル促進を 目指し、環境負荷低減に向けた活動を 推進

② eco PRODUCTS 「環境配慮型製品の提供」

国内外に提供する製品のライフサイクル 全般において環境負荷を低減するために、 技術先進性を駆使して、環境保全・ 省資源・省エネルギーに資する製品を 開発・提供


③ eco SOLUTION 「地球全体を視野に入れた 環境保全への解決提案」

これまで培った環境保全・省資源・省エネルギーに資する技術や環境マネジメントシステム等をさらに向上させ、国内外に提案し、環境負荷の低減は、さらには技術移転を通じた海外の環境問題の解決に貢献

ビジネスモデルの概要と研究開発計画の関係性

- ・左記「3つのエコ」を継続する中で、カーボンニュートラル製鉄プロセスの研究開発・実装化を行うことにより 今後2050年に向け段階的に移行が進展すると想定される「グリーンスチール化」へ他国に先駆けて対応。
- ・広範な顧客の生産を維持する観点から、現有する**鉄鋼一貫製造プロセスでの生産を継続しつつ、** 新プロセス実装や関連設備改造等を全国の製造拠点にて順次実行。
- ・今回の新プロセス開発・実装に伴い、鉄鋼の一貫製造プロセス自体は大きく変わらないことから、 **既存の川上・川下システムは基本継続。**

カーボンニュートラル製鉄プロセス

CO2分離回収技術は、CO2分離回収プラントを販売するプラントメーカー等へのライセンスを想定。

1. 事業戦略・事業計画/(4)経営資源・ポジショニング

コンソーシアムの強みを活かして、社会・顧客に対して低濃度CO2分離回収を低コストでという価値を提供する

コンソーシアムの強み、弱み(経営資源)

コンソーシアム外の企業に対する比較優位性

ターゲットに対する提供価値

- 従来技術では困難な低濃度 CO_2 排ガスからの CO_2 分離・回収するための高性能分離剤および分離回収プロセス。
- 当該分離回収技術により回収された安価なCO2。

コンソーシアムの強み

- コンソーシアム参画各社それぞれが、不純物の濃度が異なる CO_2 含有排ガスを保有しており、実ガスを用いた検証が容易。
- 構造柔軟性PCPについてコンソーシアム参画各社それぞれが、性格の異なる分離剤を保有しており、複数のアプローチで高性能な吸着剤を開発可能。
- 炭化水素分離用途で分離剤の量産スケールでの製造 実績、分離パイロット装置での検証の実績があり、CO₂ 分離・回収へのこれら知見の活用が可能。
- 回収したCO₂から化学品を製造するプロセスの実装も想定。

コンソーシアムの弱み及び対応

• 将来的な他社、他業界への横展開に向けては、マーケティング活動や新たなビジネスモデル開発等が必要。

	技術	顧客基盤	サプライチェーン	その他経営資源			
コンソー シアム							
,	(将来) • 物理吸着法 (低濃度CO ₂)	コンソーシアム各社化学メーカー鉄鋼メーカーその他業界	化学品原料CCS	技術ライセンス部門隣接コンビナートでの 技術連携グループ内エンジニアリング知見の活用			
F社	• 化学吸収法	 石炭火力 化学メーカー	メタノール原料CCS	• 電力会社と協力			
G社	• 化学吸収法	自社石炭火力天然ガス	CCSアクリル酸原料	石炭火力発電所のEPCやCCSの実績あり			

1. 事業戦略・事業計画/(5) 事業計画の全体像

約6年間の研究開発(ラボスケール)の後、2028年度を目途にパイロットスケールのフェーズに移行し、さらには、2035年度頃を目途に商用化を目指す

投資計画

		研	究開発フェ-	ーズ		→	パイロットフェーズ			商用機EPCフェーズ				事業化		投資回収 ▼
	2022年度	2023年度	2024年度	2025年度	2026年度	2027年度	2028年度	2029年度	2030年度	2031年度	2032年度	2033年度	2034年度	2035年度		2041年度
売上高 (100万円)	0	0	0	0	0	0	0	0	0	0	0	0	0		の進展に伴い	
研究開発費(100万円)					3,960					自己红	負担により、商 実施す		剣討を	0	0	0
取組の段階	ラボ フェーズ	ラボ フェーズ	ラボ フェーズ	ラボ フェーズ	ラボ フェーズ	ラボ フェーズ	パイロット スケール	パイロット スケール	パイロット スケール	商用機EPC	商用機EPC	商用機EPC	商用機EPC	商用化	商用化	商用化
CO ₂ 削減効果 (万t)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		の進展に伴い	

・上記の計画の事業化フェースではエンジニアリングメーカー等への技術ライセンスも含む

1. 事業戦略・事業計画/ (6) 研究開発・設備投資・マーケティング計画

「低濃度COっ分離システム開発」 プロジェクト コンソーシアム共通

R&D及び投資計画により競争優位性を確保し、マザー工場での商用化を足掛かりに、 将来的には国内外の他拠点をターゲットとした事業展開も睨む

効率的に実施

研究開発•実証

設備投資

マーケティング

取組方針

- 国内のPCP研究開発をリードする企業がコンソーシアムを・ 結成。各社の知見を総合的に活用。
- 低CO2濃度(10%以下)の排ガスからの高い回収率 と低い回収コストの両立を実現するCO。分離・回収技術 の確立を目指す。
- 研究開発の効率化・加速化に向けては、コンソーシアム 各社のリソースを活用するだけではなく、過去のNEDO、 JSTのプロジェクトを起点とした大学や外部の民間企業 等とのネットワークも活用することを予定している。
- また、CO。分離・回収技術と並行して、コンソーシアム内 ではそのCOっを利用した化学品製造技術の研究開発も 推進する。 ※当技術のR&DフェーズはGI基金対象外 のため自社負担を想定

- 2027年度以降のパイロットスケールフェーズ以降は、グ リーン製品需要、経済合理性等を踏まえ、コンソーシ アム各社で建設を判断
- なお、プラント設計に当たっては、コンソーシアム各社の エンジニアリング機能の他、国内プラントエンジ会社と協 業することを想定する。
- また、部材調達やプラント建設に当たっては、製造工 場周辺の地元地域の雇用創出も加味して、地場パー トナー企業や既存のサプライチェーンを最大活用するこ とを想定する。
- 2035年度以降の商用化フェーズにおいて当該技術の 事業性を担保するためには、CO。分離・回収やカーボ ンリサイクルによる付加価値創出が鍵となるが、そのた めには、顧客企業だけではなく最終製品メーカや政府、 業界団体(日本化学工業会、日本鉄鋼連盟等) 等も巻き込んだ仕組み作りが必要となる。
- また、将来的には、技術ライセンスやEPC、O&Mノウハ ウ、吸着剤供給等をパッケージ化した新たなビジネスモ デル構築により、国内外の石油化学コンビナート拠点、 製鉄拠点や電力会社のLNG火力発電所、化学品 誘導体メーカへ横展開することも視野に入れる。

国際 競争上の 優位性

- 国内外の大手化学メーカ、石油メーカ、重電メーカ各社 もCO。分離・回収技術開発に取組むが、現時点では主 に高COっ濃度の排ガスを対象とした化学吸収法や物理 吸収法が主流である。一方、省エネ、低コストを狙い、
- 且つ低濃度を対象とする本PCPでは、コンソーシアム参 画各社が先行する。
- 現時点での技術優位性や競争環境等を勘案すると、 PCPがその他の技術と棲み分け、かつ、コンソーシアム参 画各社が当該技術においてグローバルでも優位なポジ ションを構築できる可能性は十分にあると考えられる。

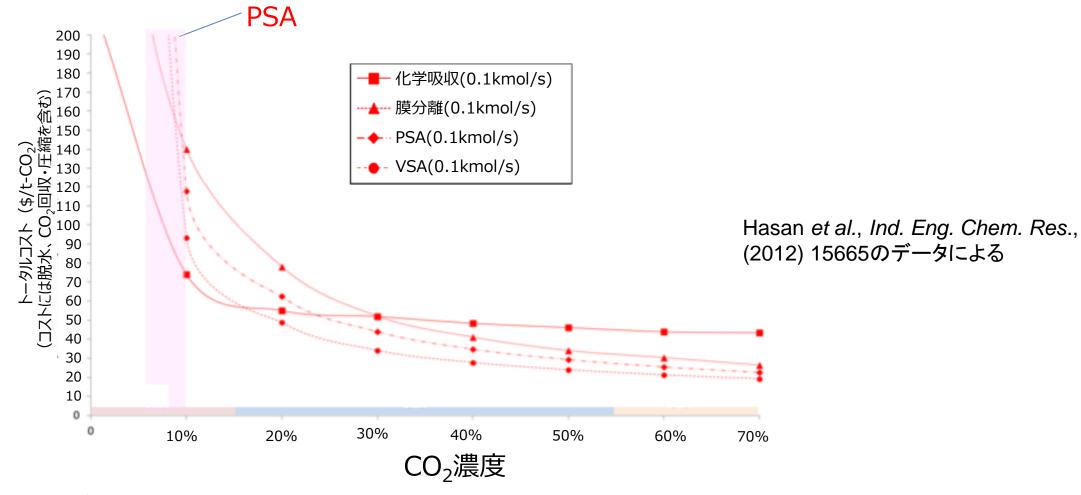
- 国内の製造工場を中心とした主要なコンビナート拠点及 び周辺臨海工業地帯においては、確固たるバリュー チェーンが既に構築されており、確実なCO。排出源におけ る分離・回収のニーズや化学品需要が存在している。
- ついては、その強みを活用しつつ、その上で、その他の競 合技術に対する競争優位性を確保するためには、各拠 点、さらには産業全体としてのカーボンニュートラル化に向 けた着実な技術開発とコストダウン、投資の推進が重要 となる。

- 化学業界、鉄鋼業界や電力業界等の各プレイヤーに よる中長期的なカーボンニュートラル化のロードマップに おいて、当該技術はその主要なオプションの一つとなり 得る。
- ついては、国内外で先駆けて当該技術の確立に成功 すれば、海外市場への本格展開や技術輸出による事 業拡大の可能性も十分にあると考えられる。

1. 事業戦略・事業計画/(7)資金計画

研究開発資金を計画、商用化フェーズでの投資額は経済性効果を見極め決定していく

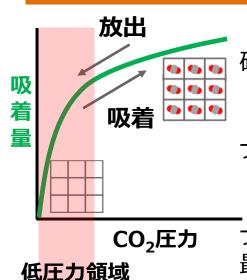
資金調達方針


(単位:100万円)

	2022年度	2023年度	2024年度	2025年度	2026年度	2027年度	2028年度	2029年度	2030年度	2031年度	2032年度	2033年度	2034年度	2035年度	
事業全体の資金需要					3,960										
うち研究開発投資					3,960					⇒ 壮/	去字 恢マ5	7 			
国費負担 [※] (委託又は補助)					3,500						句けた設備投資検討を実施予定 イセンス先のエンジニアリングメーカーに。 きえられる				
自己負担					460										

※インセンティブが全額支払われた場合

2. 研究開発計画

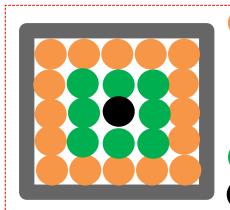

CO2濃度と分離回収コスト

現行技術では、基金目標のCO₂濃度10%以下は、 20%台と比較して分離コストが3~4倍以上に急上昇する

提案材の構造と吸着原理【優位性1】

既存材料(ゼオライト、活性炭)

【特徴】

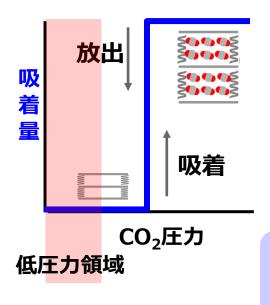

硬い、変形しない材料

【吸着原理】

ナノ細孔へのガス分子吸着

【特徴】

ナノ細孔/CO₂の相互作用が 最大になる吸着初期 = 低圧力 領域で強い相互作用 ⇒ガス回収のために高真空 = 高エネルギーが必要 = 高コスト


第1吸着層:材/CO₂相互作用 = 強固な相互作用

強固な相互作用のためCO₂放出 には高エネルギーが必要

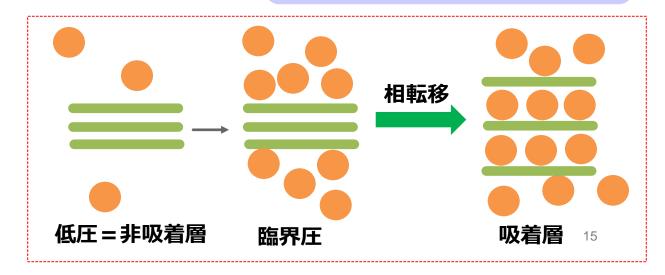
● 第2吸着層: CO₂/CO₂相互作用

第3吸着層:CO2/CO2相互作用

提案材料(構造柔軟型PCP)

【特徴】

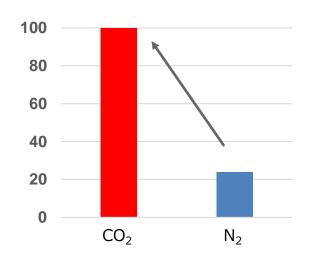
結晶でありながら柔軟性あり


【吸着原理】

・一定のガス圧を堺に、非吸着相 と吸着相の「相転移現象」

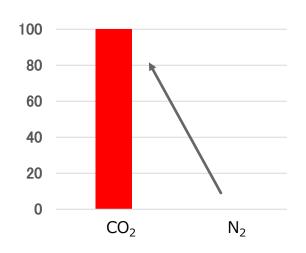
【優位性】

・中圧でガスを吸放出(材料設計 による特性)


ガス回収に高真空が不要 = 省エネ、低コスト

圧倒的なCO₂選択性【優位性2】

既存材料(ゼオライト、活性炭)


CO2以外も一定量の吸着

提案材のCO₂選択性 (注) は ゼオライトと比較し て著しく大きい

提案材料(構造柔軟型PCP)

特殊な原理(相転移)による 著しく高いCO₂選択性

(注)CO₂選択性: 25℃、800 k PaでのCO₂, N₂(いずれも純ガス)の吸着量比

提案技術の基盤検討(高濃度CO2ベースの検討)

1.分離剤開発

- ・日本製鉄は2000年代前半より開発を開始し、基礎特性の研究開発と共に実装に向けた開発も実施
- ・昭和電工は2009年に開発し、実装に向けて基礎・スケールアップの研究開発を実施

2.評価

- ・開発した分離剤は専用評価装置でゼオライト等の既存の分離剤と優劣評価を実施し、 優位性を確認
- ・開発した分離剤を適用する場合のPSA分離シミュレーションを実施

3.実用化基礎検討

- ・分離剤原料の安定調達に向けた 検討を実施
- ・その他、高温高圧CO₂暴露試験や 耐水性評価を実施

【高温高圧CO₂暴露試験】 > 1週間

【耐水性評価】 劣化度とメカニズムの検討

PCP技術実用化の流れ

スケール

汎用ガス用途 (炭化水素)

ガス単価:中

実機規模:数トン

実機詳細設計完了

NuMat社

パイロット実証 規模:数百kg

特殊ガス用途

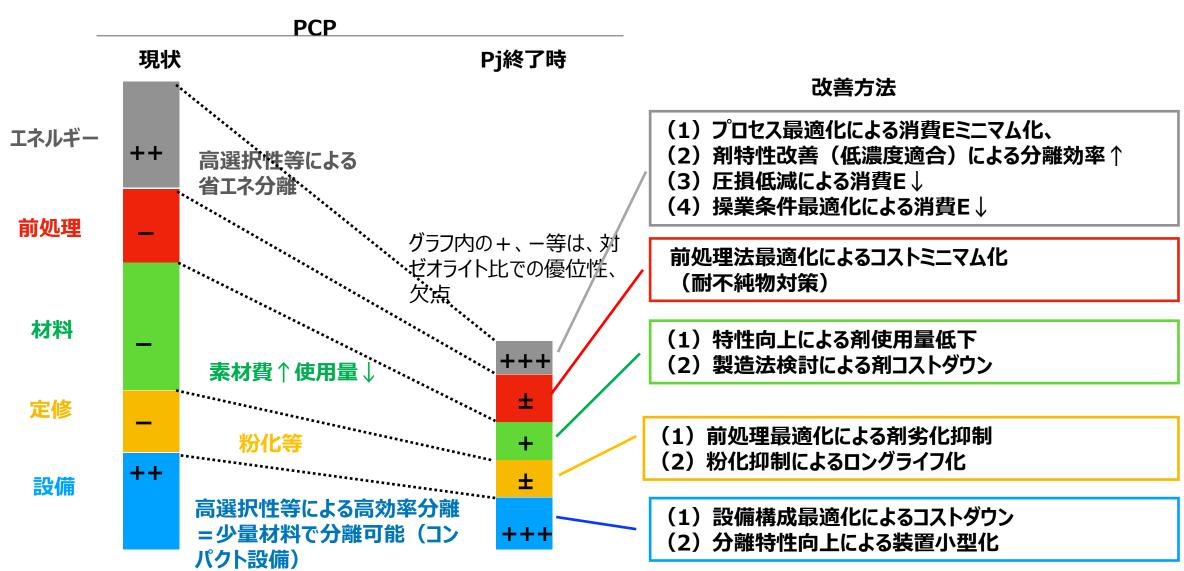
ガス単価:高

規模:数~数百kg

MOF Technology社

本基金対象

CO2回収用途


ガス単価:低

規模:数十トン

2020 2030 2035

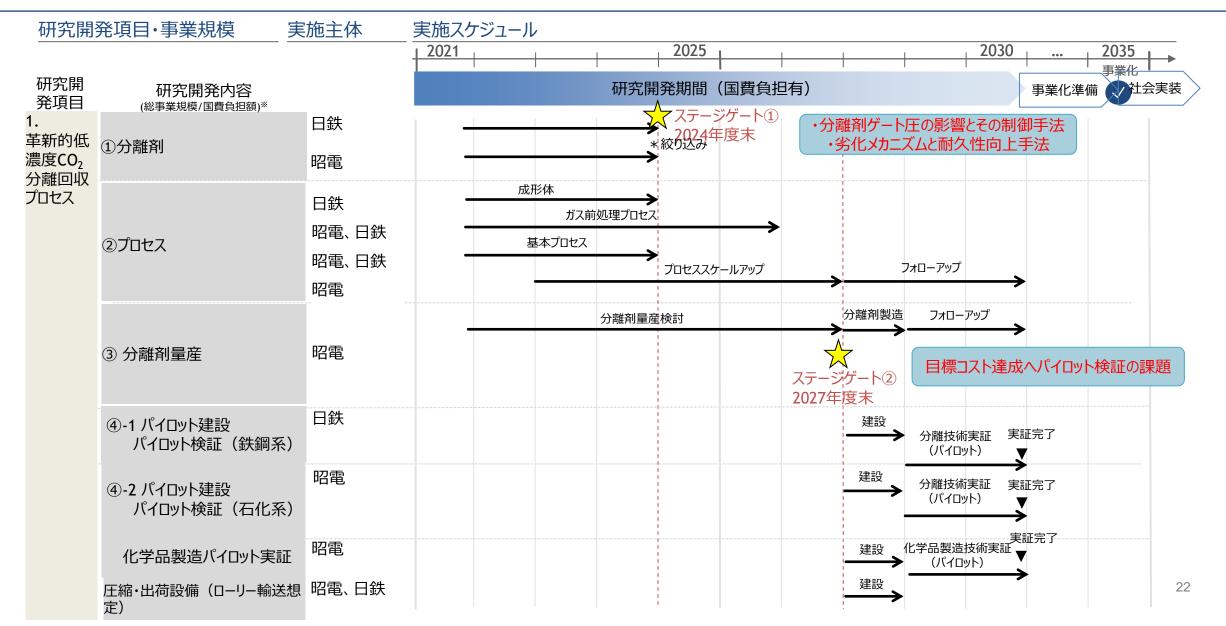
PCP量産化技術で先行しており、そのノウハウを最大限生かしてゆく

コストを構成する要素の改善方法

2. 研究開発計画/(1) 研究開発目標

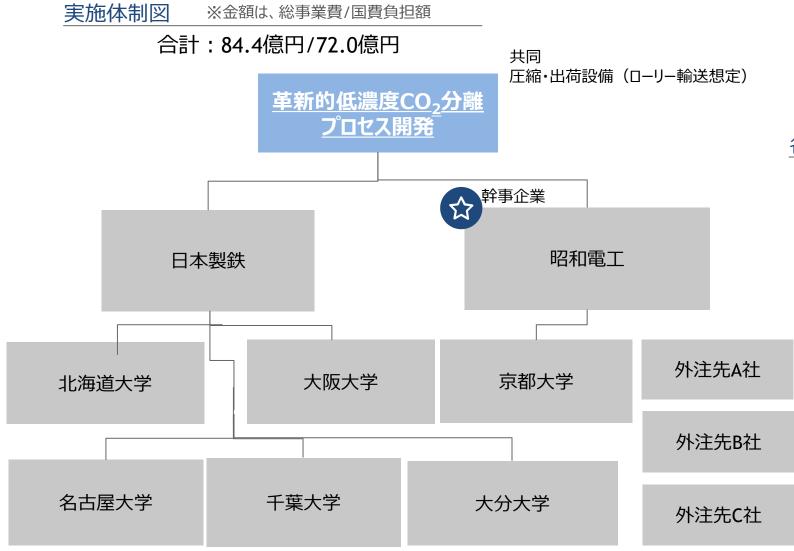
低濃度CO2分離技術確立というアウトプット目標を達成するために必要な複数のKPIを設定

アウトプット目標 研究開発項目 低濃度($CO_2 \le 10\%$)排ガスから CO_2 を、3,000円未満/t- CO_2 で、分離することを可能に 1. 革新的低濃度CO₂分離 する、分離剤の改良と量産、低エネルギー・高効率分離プラントの創出 プロセス開発 KPI設定の考え方 **KPI** 研究開発内容 分離剤 ①吸着開始圧 ①吸着開始圧↓、エネルギーコスト↓ ②吸着量 ②吸着量↑、エネルギーコスト↓ 2 プロセス ①回収CO₂基準の分離剤量↓、エネルギーコスト↓ ①回収CO₂基準の分離剤量(BSF) ②耐久性↑、分離剤コスト↓ ②耐久性 ③スケールアップファクターとして必要 ③-1圧力損失 ③-2水平方向の温度差 コスト構成の各要素においてコスト削減 分離剤量産 分離剤単価 4 パイロット建設・検証 要素技術の組合せの検証 COっ分離コスト 3,000円未満/t-CO。


2. 研究開発計画/(2) 研究開発内容

各KPIの目標達成に必要な解決方法を提案

	KPI	現状	達成レベル	解決方法
1 分離剤	①吸着開始圧 ②吸着量	プロトタイプの 吸着剤、改良の要素技術	低圧・低濃度 への適合完了	材料組成の最適化製造方法検討
2 プロセス	①回収CO ₂ 基準の分離剤 量 (BSF) ②耐久性 ③-1 圧力損失 ③-2 水平方向の温度差	実験室での 分離検証	分離技術確立	シミュレーションによる装置、操業条件検討不純物耐性評価と除去装置の設定
3 分離剤量産	分離剤単価	実験室での 合成検証	量産技術確立	反応条件・量産規模最適化量産技術確立、製造条件最適化、□ス削減
4 パイロット建設・検証	CO ₂ 分離コスト	>8,000 ¥/t-CO ₂	3,000¥未満 /t-CO ₂	実ガス、パイロットスケールでの検証


2. 研究開発計画/(3) 実施スケジュール

複数の研究開発を効率的に連携させるためのスケジュールを計画

2. 研究開発計画/(4) 研究開発体制

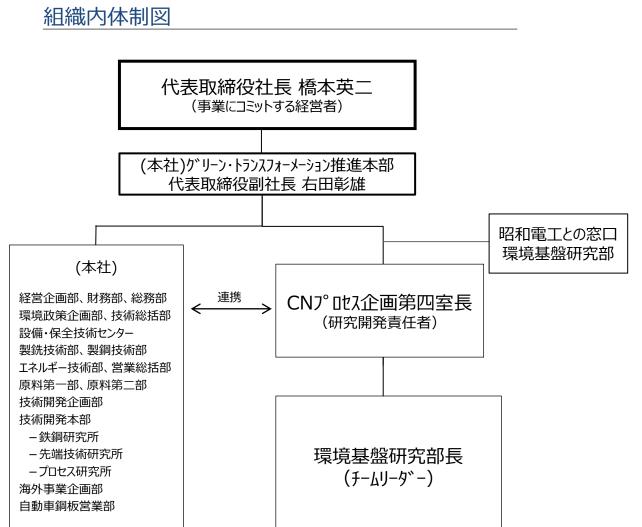
各主体の特長を生かせる研究開発実施体制を構築

各主体との連携方法

外注先は量産検討を想定

研究開発における連携方法

- 検討会を定期的(1回/月)に開催し、お互いの進捗状況の報告、技術ディスカッション、開発の進め方を確認などを行う協力体制とする
 - 共通部分の進捗確認、同じ物差しでの材料性能整理
 - 進捗確認、役割接続部の検討項目整理など
 - アカデミアも参加して進捗確認と情報交換をする場とする


3. イノベーション推進体制

(経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、専門部署に複数チームを設置

1.革新的分離剤による低濃度CO2分離システムの開発

組織内の役割分担

研究開発責任者と担当部署

- 研究開発責任者
 - CNプロセス介画第四室長
 - : 本研究開発における企画・調整を担当
- 担当チーム
 - 環境基盤研究部
 - : 革新的分離剤による低濃度CO。分離システムの開発
- チームリーダー
 - 環境基盤研究部長:研究開発試験等の実施

部門間の連携方法

- 2022年4月1日付けで、「グリーン・トランスフォーメーション推進本部」を恒久組織に改組するとともに、約90名体制に強化
- 社内関係役員が全て出席する「グリーン・トランスフォーメーション推進委員会」を 四半期に一度程度開催し、推進本部全体の進捗を管理

3. イノベーション推進体制/(2)マネジメントチェック項目① 経営者等の事業への関与

経営者による環境基本方針、カーボンニュートラルへの関与の方針

経営者等による具体的な施策・活動方針

• 経営者のリーダーシップ

- 環境基本方針
 - ・日本製鉄「環境基本方針」を制定し、HPやサステナビリティ・レポート等において 社内外に開示。

『当社は「環境経営」を基軸とし、環境への負荷の少ない環境保全型社会の構築に貢献します。このため、良好な生活環境の維持向上や廃棄物削減・リサイクルの推進など地域における環境保全の視点を踏まえた事業活動を行うとともに、地球温暖化問題への対応や生物多様性の維持・改善など、地球規模の課題にも取り組みます。』

- **日本製鉄カーボンニュートラルビジョン2050**(以下、CNビジョン2050)
 - ・2021.3に「CNビジョン2050」を制定し社内外に公表。
 - ・2030にCO2総排出量を30%削減するターゲットと、2050にカーボンニュートラルを 目指すシナリオを提示。
 - ・ビジョン達成のために、当社として超革新的技術開発に取り組むことと、社会と の3つの連携が必要であることを、社内外に発信。
 - ・サステナビリティーレポートにおいてもCNビジョンをKPIとして設定。

- グリーントランスフォーメーション推進本部 (社内組織)

- ・2021.4に「CNビジョン2050 |を推進するための専任組織を設定。
- ・2022.4に恒久組織に改組するとともに、約90名体制に強化。
- ·本部長:環境担当副社長

副本部長 :環境担当常務、技術総括担当常務 を組織の長として、経営のリーダーシップの下、プロジェクトを強力に推進。

- 事業のモニタリング・管理
 - 取締役会·経営会議
 - ・下記、「環境経営委員会」「グリーン・トランスフォーメーション委員会」の内容について、取締役会・経営会議へ報告することとしており、社外取締役も含めた、 社内外からの幅広いモニタリングを実施。

- 委員会による半期サイクルのモニタリング・管理

・環境担当副社長を委員長とし、関係役員・部長が出席する、「環境経営委員会」、「グリーン・トランスフォーメーション委員会」を各々年2回以上開催し、「環境基本方針」「CNビジョン」の課題進捗について確認。

3. イノベーション推進体制/(3)マネジメントチェック項目② 経営戦略における事業の位置づけ

経営戦略の中核においてゼロカーボンスチールの実現を位置づけ、広く情報発信

取締役会等での議論

• カーボンニュートラルに向けた全社戦略

- グリーン・トランスフォーメーション推進委員会において、戦略立案および進捗 管理を実行中。
- 「日本製鉄カーボンニュートラルビジョン2050」を策定し、2021.3に公表 (以下、「CNビジョン」と表記)。
- 経営の最重要課題として2050カーボンニュートラルの実現に取り組むこと、 および3つの超革新技術とCCUS等による2050にカーボンニュートラルを実 現するシナリオを提示した上で、各々の技術課題や3つの社会的連携にも 言及。
- 「グリーン・トランスフォーメーション推進本部」:2021.4に設置した役員直轄組織を、2022.4に恒久組織へ改組し、約90名体制に強化実施済。

事業戦略・事業計画の決議・変更

- 「CNビジョン」を中長期経営計画の柱の一つに位置付け、経営会議・取締役会に付議。
- 「CNビジョン」に関する課題進捗については、関係副社長以下が出席する グリーン・トランスフォーメーション推進委員会を定期的に開催し(年2回以 上)、進捗をフォローするとともに、同内容を取締役会・経営会議等に報告。
- 「CNビジョン」に関する進捗については、適宜プロジェクト推進に必要な社内 関連部門へ共有を実施。

• 決議事項と研究開発計画の関係

- 「CNビジョン」の中で、3つの超革新技術実現のための研究開発が 必須であることを明確に位置付け。
- 研究開発計画を最重要課題としてフォロー実施。

ステークホルダーに対する公表・説明

情報開示の方法

- 中期計画や決算発表等の I R 資料、統合報告書、サステナビィリティー・レポート、H P 等において、TCFD等のフレームワークも活用し、事業戦略・事業計画の内容を積極的に開示。
- ESG説明会、CNビジョン説明会、機関投資家・マスコミを対象にした説明 会等を実施。
- 本事業採択時にプレスリリースを実施(2022年1月9日)
- 2021年度決算発表時のプレスリリース資料において、本事業への現時点の 進捗に関する開示を実施(2022年5月10日)
- 本事業実施事業者合同で記者会見を実施し、実施事業の内容および今後の取り組みについて説明を実施(2022年6月15日)

ステークホルダーへの説明

- 事業の将来の見通し・リスクに関し、中長期事業計画や決算に関する発表 内容を、以下のステークホルダーとの各種接点を通じて情報提供。
 - ◆ 金融機関・投資家との各種エンゲージメントの機会等
 - ◆ 需要家からのサプライチェーン全体のCO2削減に関する問合せ等
 - ◆ 株主総会、エコプロダクツ展、工場見学会等
 - ◆ 政府、関係省庁、行政等
- 「CNビジョン」の内容について、各所媒体を通じて広く周知活動を実施。新聞・TV等に加え、ネット媒体等での周知についても拡大し、当社チャレンジの社会価値について広く情報発信を行っている。

「ディスクロージャー優良企業」2年連続1位

- 日本証券アナリスト協会の2021年度「ディスクロージャー優良企業選定」で、鉄鋼・非鉄金属部門の1位に2年連続で選定(経営陣のIR姿勢などの項目で最も高い評価を得たほか、中長期計画や「CNビジョン」の公表など非財務情報の開示も評価された(鉄鋼新聞))

3. イノベーション推進体制/(4)マネジメントチェック項目③事業推進体制の確保

機動的に経営資源を投入し、着実に社会実装まで繋げられる組織体制を整備

経営資源の投入方針

- 人材・設備・資金の投入方針
- 人材確保
- ・2021.4にプロジェクト実行のための副社長をプロジェクトリーダーとする組織を設置済。
- ・2022.4に、恒久組織に改組し、約90名に体制強化
- ・今後もプロジェクトの推進状況に応じ、必要なメンバー補充を随時実行。
- 設備·土地
- ・基本的には当社敷地内で既存設備を最大限活用し開発・試験を実施。
- 研究開発のための必要資金
- ・2030年までに必要な研究開発費は5,000億円程度 (今回GI基金申請対象を含む)。
- ・2031~50年の設備実装のための必要投資額は4~5兆円規模が必要と 想定。
- ・これらは当社の「カーボンニュートラルビジョン2050」実行のために最低限 必要な投資であり、短期的な経営指標の如何に関わらず、機動的に 実行していく。

専門部署の設置

- 専門部署の設置
- グリーントランスフォーメーション推進本部の設置
 - ・2021.4に「CNビジョン2050 |を推進するための専任組織を設定。
- ・2022.4に恒久組織に改組し、約90名に体制強化
- 若手人材の育成
- 若手人材への育成機会の提供
 - ・本プロジェクトはプロセス刷新というチャレンジングな開発であり、既存プロセス を原理原則に立ち返って深く理解し直した上で、新プロセス開発に取り組む ことが必要であり、若手人材の育成にとって非常に有用。
 - ・本研究・開発に当たっては、中堅・若手の研究者・技術者を配し、将来的な 鉄鋼製造プロセスの変革に向けた研究開発・実装化を経験することによる 育成機会を付与。
- 外部機関の活用
- ・研究開発推進に当たっては、外部機関の活用にも常に門戸を開き、適任者 がいれば若手研究者等にも共同研究に適宜参画いただく。

4. その他

リスクに対して十分な対策を講じるが、情勢変化等の事態に陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

R&Dリスク

- 分離技術開発が設定したKPIに未到達。化学品製造技術 開発に遅延。
 - 第一人者の大学研究室との協働による開発推進 リソース配分の見直し
- 人材を中心とした研究開発体制の確保・高度化
- -特に重要パート(プロセス開発のシミュレーション技術、模擬装置での分離実測等)を中心とした複数箇所(大学/企業等)での技術共有を行うなど世界レベルで人材採用の展開
- パートナー企業(分離剤原料製造元等)におけるトラブルの影響による研究開発スケジュールの遅延
 - サプライチェーンの複線化
- 他社の特許等の知的財産権への抵触、情報漏洩リスク
 - -特許監視、特許網(基本特許、重要特許)の構築
 - 知財・法務部門の専任者によるチェックを実施
- パイロットプラント建設の遅延(納期遅延、作業遅延等)
 - 工程管理を行うコンソーシアム各社内の関係部門との 連携強化
 - 日常的に取引のある協力会社とのコミュニケーション 円滑化・効率化
- 技術の陳腐化リスク
 - -計画通り最速スケジュールで開発→社会実装を進める

社会実装(経済社会)におけるリスクと対応

市場リスク

- 脱炭素政策やマクロ環境動向に伴う産業構造変化の影響による低濃度CO₂排ガスの分離・回収やカーボンリサイクルによる化学品製造の需要減少
 - 牛産規模や事業化時期等の再検討
- 原材料価格変動リスクの顕在化
 - 原料価格トレンド・予測等の継続的なモニタリング
 - 需要家との協力による適切な価格転嫁

事業リスク

- 競合分離技術の台頭による競争優位性の低減
 - 分離/利用のカップリングによる最適化を通じた更なる コストミニマム化の実現
 - カーボンリサイクル等の付加価値創出による競争力強化
- プラントEPCのコスト及びタイムオーバーランの可能性
 - 規格化等を通じた早期普及による一括購入等のアプローチでのEPCコストのミニマム化
 - 生産規模や事業化時期等の再検討

社会リスク

- 人口減少・高齢化を背景とした労働者不足の顕在化
 - 労働環境や待遇の改善、採用活動の強化等による 人材確保の推進

その他(自然災害等)のリスクと対応

災害リスク

- 高潮・沿岸域の氾濫や地震、パンデミック等による製造 設備の損害・事業停止に伴う業績悪化や装置損傷に 伴う分離剤漏洩による環境への影響
- 事前の毒性他評価及び結果に応じた装置の 仕様策定
- 災害時のマニュアル整備やBCP訓練による被害の抑制
- サプライヤーやインフラへの影響を受けての事業停止に伴う業績悪化や安定供給への影響
- サプライチェーン全体を考慮したBCP管理による被害の抑制

その他のリスク(システム等)

- ネットワークウイルス等によるコンピューターシステムの休止
- 情報セキュリティ規定順守によるオペレーション管理の 徹底
- セキュリティ機能強化による機密情報漏洩対策の徹底

● 事業中止の判断基準:

- ▶ ターゲット業界/顧客における基幹製品の製造プロセス革新により、CO₂排出量や濃度等に大きな変動があった場合
- ▶ 低濃度COっ分離・回収において、弊社開発技術に対して、競合技術の競争優位性が顕著になった場合
- ▶ カーボンリサーイクルによる化学品製造において、将来的な炭素排出コストを考慮しても従来法に対する弊社開発技術のコスト優位性が期待できなくなった場合。