事業戦略ビジョン

実施プロジェクト名: 洋上風力発電の低コスト化

研究開発項目フェーズ1-④ 洋上風力運転保守高度化事業 風車建設・メンテナンス専用船(Service Operation Vessel: SOV)開発プロジェクト

: イーストブリッジリニューアブル株式会社 代表名: 代表取締役 植木圭紀 実施者名

共同実施者: 東京汽船株式会社

目次: Service Operation Vessel (SOV)導入・開発プロジェクト

0.コンソーシアム内における各主体の役割分担

- (1) 事業計画ビジョンとコンソーシアム各社の関係性
- (2) コンソーシアム内における各主体の役割分担

1. 事業戦略・事業計画

- (1) 産業構造変化に対する認識 マクロトレンド認識
- (2) 市場のセグメント・ターゲット
 - ① ターゲット概要
 - ② 市場規模とシェア
 - ③ 洋上風力マーケット概要
- (3) 提供価値・ビジネスモデル
 - ① ビジネスモデル
 - ② SOV発電コスト低減効果
 - ③ 風車アクセス率 (SOV VS CTV)
- (4) 経営資源・ポジショニング
- (5) 事業計画の全体像
- (6) 研究開発・設備投資・マーケティング計画
- (7) 資金計画

2. 研究開発計画

- (1) 研究開発目標
- (2) 研究開発内容
 - ① 造船設計
 - ② ハイブリッドシステム
 - ③ O&M提案標準化
- (3) 実施スケジュール
- (4) 研究開発体制
- (5) 技術的優位性

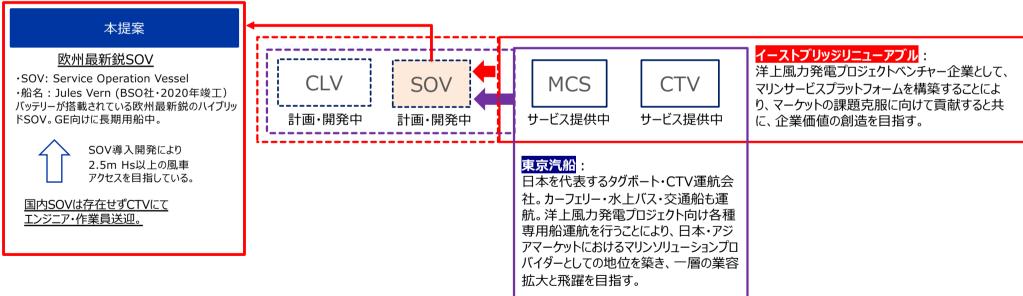
3. イノベーション推進体制

- (1) 組織内の事業推進体制
- (2) マネジメントチェック項目
 - ① 経営者等の事業への関与
 - ② 経営戦略における事業の位置づけ
 - ③ 事業推進体制の確保

4. その他

(1) 想定されるリスク要因と対処方針

0.コンソーシアム内における各社役割分担


0.コンソーシアム内における各主体の役割分担/(1)事業計画ビジョンとコンソーシアム各社の関係性

本提案:アジア洋上風力マーケット初となる風車建設・メンテナンス専用船(Service Operation Vessel: SOV)を開発・導入し、2030年に国内並びにアジアマーケットにおいて、着床式・浮体式洋上風力向け海底ケーブル布設工事マーケットの主要プレーヤーとなることを目指す。

✓ 洋上風力発電コストの低減化(2030-2035年8-9円/kWh)と導入拡大(2030年10GW→40年30-45GW)を目指す。

✓ SOV導入・開発プロジェクト:発電コストの低減目指す、性能:2.5mHs以上の風車アクセス、 25%燃費向上、O&M稼働率97%達成を目指す、。

✓ 事業計画ビジョン:洋上風力プロジェクト向けマリンサービスプラットフォーム構築(次ページイメージ図参照)

All Rights Reserved, Copyright © East Bridge Renewable Co., Ltd.

0.コンソーシアム内における各主体の役割分担/(2) コンソーシアム内における各主体の役割分担

✓ プロジェクト目的:風車建設・O&M専用線 (SOV)開発・導入ににより、洋上風力発電コストの低減化に貢献する

東京汽船(株) (幹事会社) 研究開発の内容

- 商務•技術全般
- 運転・保守全般

イーストブリッジリニューアブル(株)

研究開発の内容

· 商務·技術全般

共同研究開発

社会実装に向けた取組内容

- 造船設計管理(設計・水槽試験・船 級証書)・ハイブリッドシステム
- オペレーション体制構築 等を担当

社会実装に向けた取組内容

- ビジネスモデル開発(スキーム・事業 件・マーケティング)
- 欧州・海外企業とのコーディネンション
- 工事要領標準化・リスク分析 等を担当

1. 事業戦略・事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識(マクロトレンド認識)

洋上風力発電プロジェクト向けインフラ需要が急拡大すると予想

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

- 2030年には、人口減少の加速化と共に(*1)、国民の3人に1人が65歳以上(31.1%)という少子高齢化が進む。(*1: 20年1.26億人→30年1.19億人。60年には0.87億、現在の2/3に減少。内閣府データーより)
- 日本国内市場の縮小傾向が顕著となっていく中、従来のネットワーク型エネルギーインフラではなく、コンパクト目つ輸入化石資源に頼らない再生可能エネルギーを主電源化した永続的、且つ、安定的な新たなエネルギー供給システムの構築が求められていく。

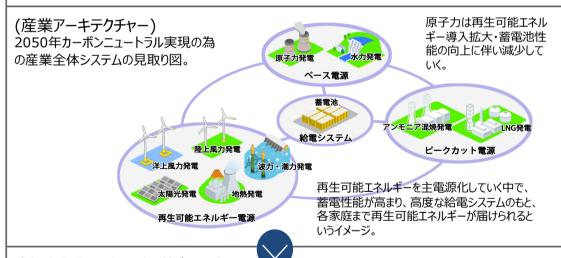
(経済面)

- 地域社会における高齢化・過疎化を背景とした中央首都圏との経済格差が益々 顕著となる中、国内全体の経済レベルの底上げを図る為には、地域経済・産業の 発展が重要となる。
- 国内市場の縮小傾向と国内労働力の低下が見込まれる中、日本の製造業の競争力を下支えする為の製造拠点、並びに、輸出先マーケットとして、経済的に相互補完関係にあるアジアマーケットにおける日本企業の経済活動重要性が増していく。

(政策面)

- 日本経済を牽引出来る新たな産業分野を創出する為に、成長分野を後押しする産業界に対する規制緩和、税制、予算関連の政策面での支援が必要となる。
- 再生可能エネルギー関連では、国内電力電力インフラシステムの統合により、効率的、且つ、弾力的な送変電運用を可能とすることや、洋上風力の導入拡大を下支えすべく欧州・台湾同様、漁業補償問題を政府が直接介入し得る政策基盤を整備することが重要となる。

(技術面)

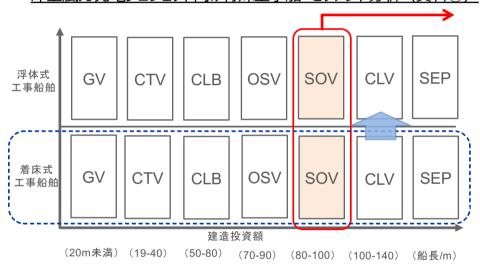

- 作業効率化・安全性を追求する為の各種デジタル化、更に、労働生産性の改善を後押しするAI、ロボット技術の革新・導入が求められる。
- アジアを含めえた海外マーケットへの輸出競争力を高められるハードウェア・ソフトウェアの技術開発が求められる。

(市場機会)

• 今後、洋上風力発電の大規模導入が図られる中、EPC工期短縮とコスト削減を実現する 為に、工事インフラビジネスに着目。欧州成功・失敗事例に学び、各種専用工事船や風 車アクセス手段をマリンサービスとして一括サービス提供することにより、他社との差別化を図 り、中・長期的にビジネス形成を図ることが出来ると考えている。

(社会・顧客・国民等に与えるインパクト)

- 大型字工事特殊船の導入により、大幅な工期短縮と工事費の削減を実現し、洋上風力発電単価低減化に貢献する。
- 最終的には、日本国民の電気代コスト低減化に寄与する。

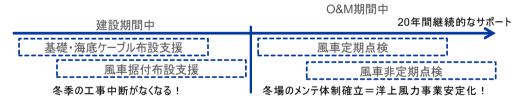

(当該変化に対する経営ビジョン)

• カーボンニュートラル2050に基づいた国内エネルギー・産業構造変革を後押しすることにより日本国民の生活安定化に貢献すること、更に、自社従業員や協業関連企業に対し、やりがいを感じることの出来る「挑戦と創造」の機会を創り出すことを目指す。

1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット(①ターゲット概要)

発電コスト低減効果の高い建設・O&M用専用船(SOV: Service Operation Vessel)をターゲットとして想定

洋 ト風力発電プロジェクト向け特殊工事船・セグメント分析(資料①)

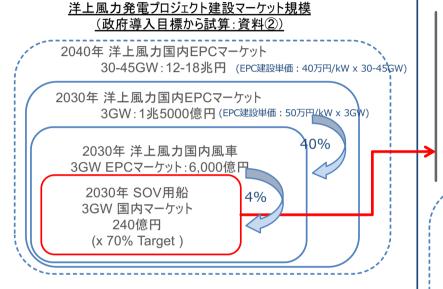


先ずは、着床式向けに用船を行い、浮体式が実現したら浮体式も合わせてサービス提供することを想定。

ターゲットの概要

(市場ターゲット)

- 特殊工事船インフラビジネスの中でも、特に需要が高く、発電コスト低減化への影響が大きいSOVをターゲットとする(資料①)。
- SOV用途は、主に、建設期間中の基礎・ケーブル・風車据付建設支援と風車O&Mの二つに使われ、年間を通じて、安全に、作業員やエンジニアを送迎することが求められる。
- 特に、日本の場合、洋上風力建設に関するインフラが未整備の為、冬季4ヶ月間の工事中断を余儀なくされているが、SOVを導入することにより、冬季も工事が実施出来ることとなり、多大なEPCコストダウンメリットが期待出来る。更に、年間風車アクセスが可能になることより、突発的な事故対応能力が大きく改善され、風車の安定稼働に大きく寄与することとなる。欧州では、洋上風力のEPCコストダウン、並びに、事業性安定化の為に、極めて一般的なインフラとして広く普及しているが、日本ではまだ導入されていない。



(事業化予定時期)

- フェーズ1:2022年1年間。として各種技術・商務検討を行い、この時期で欧州最新鋭船と同等以上の機能を持てることを確認する。
- フェーズ2:2023年中盤を目指して実証ステージに入り建造を開始する。建造期間は30ヶ月を想定しており2026年中の社会実装(商業運転)開始を目指す。

1. 事業戦略・事業計画/(2)市場のセグメント・ターゲット(②想定市場規模とシェア)

SOV用船マーケットにおいて、2030年までに国内マーケットにおけるトップシェア獲得

<u>洋上風力アジアマーケット規模(新設のみ)</u> (各国公表数値から試算:資料③)

2030年SOVマーケット規模(建設時)中国65GW3,250億円台湾15.5GW780億円韓国12GW600億円ベトナム10GW500億円日本3GW240億円x70% Target

* 100GW 5,280億円

(想定市場規模・シェア目標)

- 建設期間中:2030年に3GW規模の洋上風力が導入された場合、冬場の使用を中心に、左図の通り、約240億円のSOV 用船マーケットが期待出来る(資料②)。
- 商業運転(O&M)期間中:欧州では、SOV1隻で約180本のメンテナンスを実施しており、夏場は定期メンテナンスに活用し、冬場は突発的な事故対応として非定期メンテナンス対応として使っている。従い、2030年までに3GW(3,000MW/15MW=200本)導入された場合には、1隻で日本全国の案件をサポートすることは無理な為、おそらく2隻、2040年に、30-45GW導入された場合には、2,000-3,000本/180本=11~17隻の需要が見込まれ、下記の様なマーケット規模が予想される。
- 2030年:25億円/年x2隻=50億円/年、50億円/年x20年=1,000億円(20年間の用船料)
- · 2040年:20億円/年x 11-17隻=220-340億円/年、220-340億円/年 x 20年 = 4,400-6,800億円(20年間用船料)
- 2030年までに、日本マーケッにおけるトップシェア、建設SOV需要の70%、更に、O&M SOV需要の50%獲得を目指す。

想定顧客 主なプレーヤー 風車(本数)

国内EPC • 本邦船会社 15MW/基にて換算。 コンストラクタ

風車メーカー海外船会社

海外船会社2030年:3GW=200本→2隻、1,000億円

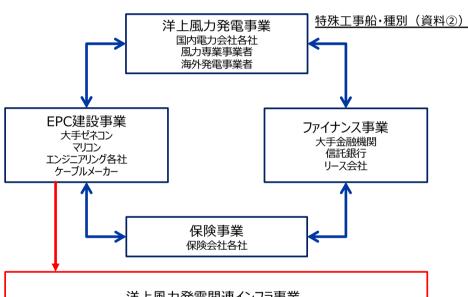
• 2040年 30GW = 2000本 45GW = 3000本 →11-17隻、4,400-6,800億円

· SOV用船事業·経済性:

洋上風力導入拡大のスピード: 180本で1隻ということは、 言い換えると、欧州では、それだけメンテナンスを実施して SOVとして事業性が成り立つということであ流。日本の場合、 一気に180本建設されることは想像が難しい為、洋上風力 導入初期段階で、如何にSOV事業性を確保するか。

• SOV運用:

欧州の場合、風車メーカーが数百本単位でメンテナンスを実施している為、風車メーカーが1社でSOVを複数隻長期で用船している。日本の場合1社の風車メーカーが180本販売するには時間がかかると予想される為、複数の用船者と用船契約を締結することが予想される。その場合、1隻のSOVを複数の用船者と如何に共同使用するかという運用面での課題が生じる。


*:METIが予想しているアジア地域における2030年、洋上風力発電規模は126GW。

1. 事業戦略・事業計画/ (2) 市場セグメント・ターゲット (③洋上風力マーケット概要)

欧州洋上風力発電マーケットには、発電コスト低減に不可欠な工事特殊船が十分整備されているが、日本では未整備であり、国内洋上風力インフラマーケットは急拡大が見込まれる。

洋上風力関連ビジネス概観(資料③)

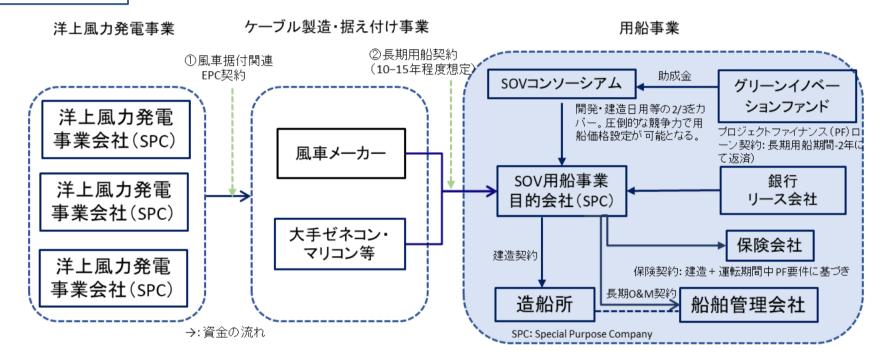
洋上風力事業は、主に下記4つに分類される。 その中で、EPC建設事業遂行の為に下記の様なインフラ整備が必要となる。

洋上風力発電関連インフラ事業

工事特殊船、重量貨物輸送船、港湾設備(埠頭・仮組立ヤード・倉庫)、 各種クレーン、架台、特殊吊具、重量物輸送車等。

基礎、海底ケーブル、風車の据付を実施する為に資料②記載の工事特殊船が、其々必要とな

注 L 国力 登雷田 丁 事 特 殊 船 (資 料 🙆)


		基礎	海底ケーブル	風車				
	Jack Up	必要	不要	必要	基礎と風車は地上と同じ工事環境が必要な為船をジャックアップする必要がある。			
工事船舶	着床式	SEP		SEP	国内1隻(Zaratan: 900t crane)。一隻建造中(清水建設: 2,500t crane)。政府導入計画規模を勘案すると全く足りていない。風車・基礎の大型化に伴い清水建設SEPでしか建設出来なくなる見通し。SEP船が不足しプロジェクト開発が遅延する可能性大。			
工事船舶	着床式	-	CLV	-	現在、国内にはない。将来的に国内マーケット向けに複 数隻必要。			
工事船舶	着床式	-	CLB	-	国内2隻(あわじ、開洋)。			
工事船舶	着床式	SOV	SOV	SOV	現在、国内にはない。将来的に国内マーケット向けに複 数隻必要。			
工事船舶	着床式	CTV	CTV	CTV	国内6隻(東京汽船6隻所有)。将来的に、導入プロジェクトx 2-3隻以上は必要。			
工事船舶	着床式	OSV			バージで対応可。海中騒音対策用として10数台のコンプレッサーを搭載出来る規模の多目的船が必要となる。			
工事船舶	着床式	GV	GV	GV	地場漁船にて対応。			
工事船舶	浮体式	OSV	OSV	OSV	現在、国内にはない。大型タグボート若しくはアンカー ハンドリング船が必要となる。			
工事船舶	浮体式	-	CLV	1	現在、国内にはない。将来的に、国内マーケット向けに 複数隻必要。			
工事船舶	浮体式	SOV	SOV	SOV	現在、国内にはない。将来、国内マーケット向けに複数 隻必要。			
工事船舶	浮体式	CTV	CTV	CTV	国内6隻(東京汽船)。将来的に、数十隻規模で必要。			
工事船舶	浮体式	GV	GV	GV	地場漁船にて対応。			

SEP: Self Elevating Platform, CLV:Cable Laying Vessel(海底ケーブル布設専用船)、SOV:Service Operation Vessel(建設コ ミッショニング・O&M専用船)、OSV:Offshore Support Vessel(工事船),CTV:Crew Transfer Vessel(風車エンジニアを風車 まで送迎する為の船)、GV: Guard Vessel(警戒船)。

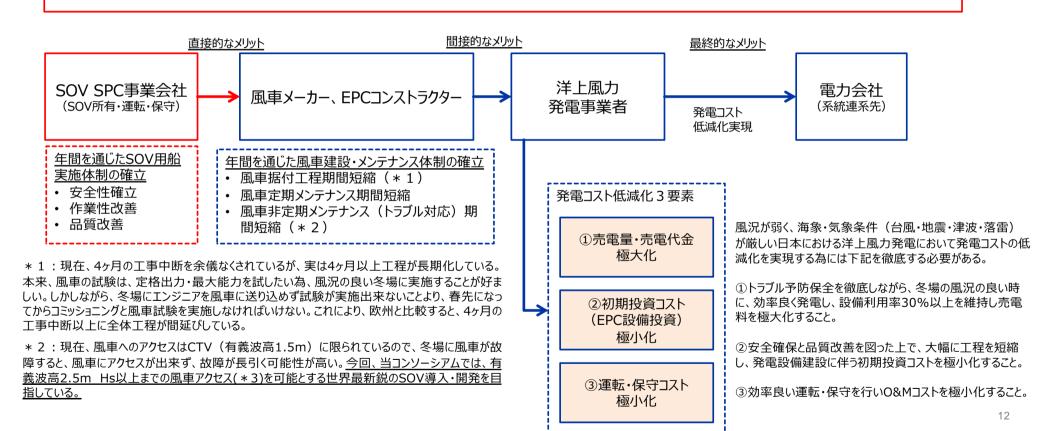
1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル(①ビジネスモデル)

圧倒的な風車アクセス率を達成し、SOV用船事業を創出

SOVビジネスモデル概要

①:EPC契約:

- プロジェクト毎に、EPC契約を締結。その上で、ゼネコンが冬季にSOVを使って風車据付工事(コミッショニング試験)を実施する。
- 本SOV用船事業を実現する為には、長期的に、風車据付工事が計画・実現される必要がある。


②用船契約:

- 長期用船契約に基づく用船料が本SOV事業の収益源泉となる。
- 1社単独若しくは複数社との契約を想定。
- 洋上風力発電プロジェクト実現度を勘案し、SOV予想稼働率に基づいて最終契約化されることとなる。

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル(②SOV発電コスト低減効果)

SOV導入・開発により、年間を通じて2.5m Hs以上の風車アクセスを可能とし、国内洋上風力マーケットを変革する。

• SOV提供価値(2.5m Hs以上 風車アクセス) = 洋上風力発電事業の安定化 + 発電コスト低減化3要素への貢献

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル(③風車アクセス率: SOV VS CTV)

SOV導入に基づき、冬季の風車アクセス率が大きく改善されることより、国内洋上風力マーケット環境が格段に改善する。

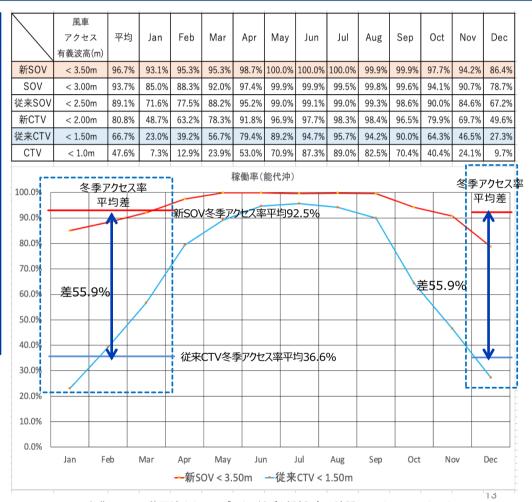
風車アクセス率比較

新SOV 従来CTV

年間平均: 96.7%. 66.7% (差:30.0%)冬季アクセス率: 92.5% 36.6% (差:55.9%)

新SOV:

- ✓ 年間平均96.7%の風車アクセス率を達成出来る。冬場の風車アクセス問題なし。
- ✓ 冬季建設丁事中断がなくなる。
- ✓ 年間を通じたメンテナンス体制を構築出来る。特に、日本海側の冬季落雷対策として有効。
- ✓ 又、24時間体制のメンテナンス実施が可能となり、効率的なメンテナンスが実施出来ることより、国内における風車エンジニア不足問題の解決に繋がる。


従来CTV:

- ✓ 年間平均66.7%の風車アクセスが可能。
- ✓ 冬季4ヶ月間は風車へのアクセスが40%を切る為、現場作業員の手待ちが増えてしまう ので、工事は中断せざるを得ない。
- ✓ 突発的な事故が冬季に起きた場合には、迅速に修理を行うことが困難。

洋上風力事業の安定化

各種定量メリット(建設期間中&風車運転期間中)

発電コスト低減実現へ

出典: EBR・秋田沖ナウファスデータに基づき解析 (24時間weather window)

1. 事業戦略・事業計画/(4)経営資源・ポジショニング

欧州企業との協調に基づく欧州先進知見の取り込み体制の強みを活かして、洋上風力発電コスト低減に貢献する。

自社の強み、弱み (経営資源)

ターゲットに対する提供価値

- 年間を通じた風車建設・修繕実施体制の確立。
- 世界最新鋭SOVに基づき安全性・丁事品質の改善・作業性の向上 を図り、顧客(ゼネコン・風車メーカー)が、大幅な工程短縮と工事 費削減を実現し、更に、洋上風力事業者が各種定量メリットを提供 する(提供価値詳細次ページ以降参照)。

自社の強み

- 欧州企業との協調に基づく欧州先進知見の取り込み力。
- 2.5m Hs以上という圧倒的な風車アクセス限界により、国内マー ケットに革新的なサービスを提供する。

自社の弱み及び対応

- 本邦船会社やマリコン等が、新規参入してきた場合には、経営・財 務基盤・既存商売の規模が弱みとなる。
- 将来的には、本邦船会社と競合するのではなく、協業することも対応 策の一つとして検討している。

他社に対する比較優位性

技術

顧客基盤

サプライチェーン

その他経営資源

• (現在)

国内で唯一6隻のCTVを所 有・運用。欧州設計に基づく 最新鋭CTVに基づき有義波 高で1.5m 超の風車アクセス 環境を提供している。

• (将来)

限界は2.5m程度であり、 2.5m Hs以上という風車アクセ スレベルは、現在の欧州レベル を超えるものとなる。

(現在)

国内洋上風力向けに CTV短期及び長期用船 中。

(将来)

- 欧州におけるSOV風車アクセス SOVが導入出来れば、 CTV顧客基盤がそのまま SOV顧客基盤に変わってい く見通し。
 - 風車メーカー及び国内建設 会社と協議中である。

(現在)

現在、日本国内における造船 所ではSOV建造実績はない。

(現在)

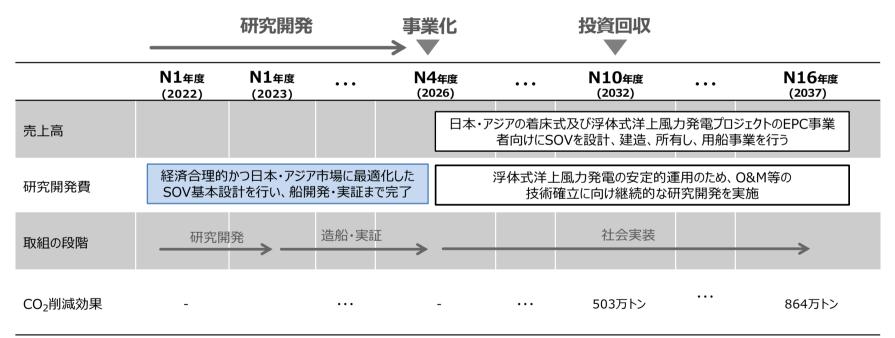
洋上風力発電プロジェクト向 け工事船を中核事業として 据えており、既に。ヒト・モノ・ カネを集中して投入している。

(将来)

2.5m Hs以上という高い目 標を達成する為に基本設計 は実績ある欧州に依頼する 予定。

詳細設計以降は本邦造船 所若しくはアジアの日系造船 所に依頼する予定であり、 国内企業に対する経済波 及効果が期待出来る。

(将来)


今後、本格的に、国内マーケ ットにおいて洋ト風力発電プ ロジェクトの導入拡大が進む と大型の工事船が必要となっ てくることより、投資額が一気 に増額する。進捗にマーケット の拡大スピードを見極めて慎 重に、但し、迅速に投資判 断を進めていきたい。

1. 事業戦略・事業計画/(5) 事業計画の全体像

3年間の研究開発の後、2026年頃の事業化、2031年頃の投資回収を想定

投資計画:

- 本事業に関し、N16年度2037年までの長期スケジュールを下記の通り記載。
- ・ スケジュール前提: 2023年最終投資判断、2023年下期建造を開始(納期30ヶ月)、2026年後半商業運転開始。
- 用船料・稼働率を設定する際は、予想される建造価格に加え、投資リターン目線、並びに、投資回収期間を勘案して設定している。

- ・洋上風力発電量が火力発電量を代替と仮定(火力のCO2排出係数は0.66kg-CO2/kWhとする)
- ・事業化後の年あたりCO2削減量: 15,000kW × 25基 × 24hr × 365日 × 0.332(設備利用率) × 0.66[kg-CO2/kWh]

1. 事業戦略・事業計画/(6)研究開発・設備投資・マーケティング計画

研究開発段階から将来の社会実装(設備投資・マーケティング)を見据えた計画を推進

研究開発·実証

設備投資

マーケティング

取組方針

(知財・標準化戦略)

- 特許等知財戦略は、今後の課題。
- 標準化戦略に関しては、欧州EPCコントラクター等、 実際にSOVに基づき風車据付作業を実施している 企業から現場知見を取り込んだ上で、SOV使用に 基づく工事要領やリスク分析手法の標準化を実施 する。

(オープンイノベーション)

• 造船設計やシステム開発は秘匿性が高く一般公開しながら研究開発進める手法は適していないと考えている。

(顧客ニーズ)

• 基本設計段階から古河電工ケーブル仕様要求事 項やサイト特性条件を反映しながら作業を進めてい る。

(設備・システム導入)

- 欧州最新知見を取り込んだ上で、国内研究機関や本邦造船所と技術検証しながら技術開発を進める。 (部品調達)
- 国内におけるメンテナンス性を勘案し極力日本製を使う方針。特に、メンテナンス頻度の高いエンジン・各種ポンプ等の回転機器は国内製品を使うことが必須となる。合わせて国交省JG承認品リストに照らし合わせながら、適宜日本船籍が取得出来る様部品調達を行う予定。フェーズ1で部品調達リスト作成予定。(立地戦略)
- 最終的に建造されたSOVは日本海側、秋田県・青森県の洋上風力サイトで多く使われると予想しており、日本海側(新潟・秋田)にメンテナンス・ベースポート拠点を設けることを検討中。

(流涌·広告)

 アジア地域においても欧州同等レベルの最新鋭 SOVは存在しないことから、建造することが決まった 段階で、アジアマーケット関係者から注目度が高いことが予想される。従い、特に流通・広告に予算をかけることは考えておらず自社HPにて適宜発表していくことで宣伝効果は期待出来ると考えている。

(価格)

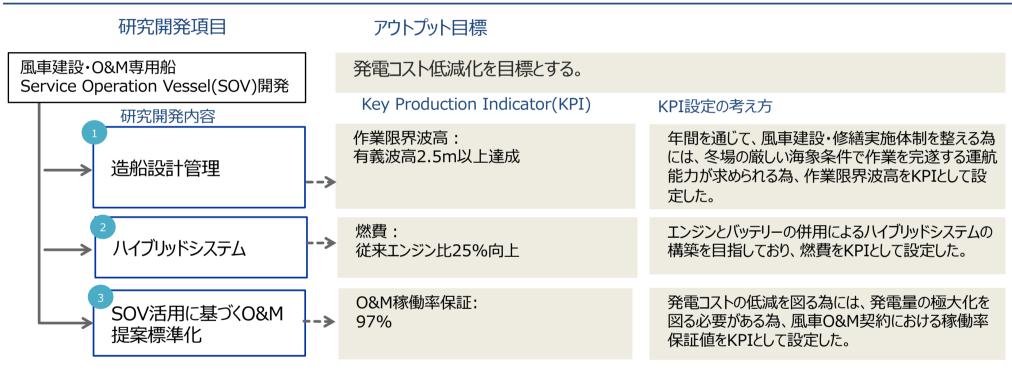
- 欧州洋上風力マーケットで使われている特殊工事 船は、中国・ベトナム等アジア造船所やポーランド等 東欧造船所で多く建造されており、価格競争力が 高い。
- 本SOV事業は、国内のみならず海外マーケットでの 欧州EPCコントラクターとの競合も視野に入れている ので、グリーンイノベーションファンドによる経済性の底 上げを図りながら、中国造船所建造船との競合に 勝てる様、建造価格や用船予算を策定していく予 定。
- フェーズ1で本邦造船所から建造価格を入手し、 SOV事業性・経済性を検証する予定。 (商品改良)
- 日本・アジアの天候・海象条件、更に、サイト特性に 基づき適宜造船設計していくこととなる。

国際競争 上の 優位性

(国外競合他社との関係)

- 欧州EPCコントラクターが既に台湾進出を果たしており、台湾マーケットでは欧州勢との競合が予想される。GIファンド活用による圧倒的な価格競争力と最新技術を取り込み世界的にも最新鋭のSOVを建造することでアジア地域においてもBSOとのとのパートナー戦略のもと欧州勢と競合していく考え。
- (上記取り組み方針有効性・優位性)
- 欧州先進技術を取り込み、且つ、グリーンイノベーションファンドで価格競争力を保持出来る限り、海外マーケットにおいても競争優位性は確立出来るものと考えている。最終的には、SOV建造価格次第で国際競争力が保持出来るか大きく影響を受けることとなる。

<u>資金</u>調達方針


- 当該事業全体の資金需要に対する国費負担額は下記の通り。
- ・ 総事業費:経済合理性を担保しつつターゲット市場に最適化したSOV基本設計をフェーズ1で決定後、精査する
- 国費負担: フェーズ1およびフェーズ2において、総事業費 x 2/3を想定
- 外部調達:長期用船料を担保としたノンリコースプロジェクトファイナンス、若しくは、リースファイナンスを検討中。
- 自己負担:コンソ2社にて当分を負担する。当社(EBR)負担分は自己資金で対応予定。

	フェーズ1 フェーズ2 (想定)			,					
	N1 年度 (2022)	N2年度 (2023)	• • •	N4 (202		N5 年度 (2026)	•••	N14 年度 (2035)	
事業全体の資金需要									
研究開発投資		造コストに基づき、フェーズ2の事業規模				本事業期間にてSOV開発・実証を完了させた 後、長期用船料を担保としたノンリコースプロ ジェクトファイナンス、若しくは、リースファイナンス			
国費負担 [※] (委託又は補助)	事業期間内に 実証検証を経	端定。 業期間内にSOV開発 証検証を経て、2026 業開始(=社会実装		船	• 浮 O	よる資金の外部調達を検討。 『体式洋上風力発電の安定的運用のための &M等の技術確立に向け、継続的な研究開 終を実施。			
自己負担					, A	で 人 が心。			

2. 研究開発計画

2. 研究開発計画/(1)研究開発目標

日本初となる世界最新鋭のSOVを導入・開発し、着床・浮体式洋上風力発電に関する発電コスト低減に貢献する。

NOTE:

- KGI: Key Goal Indicator。重要目標達成指標。最終的な目標・ゴール。
- KPI: Key Performance Indicator。最終目標・ゴールに到達する為のプロセス(手段)において、その過程を図る為の中間的な定量指標。
- RAMS: Risk Analysis & Method of Statement.
- *1: 資源エネルギー庁WG想定2030年売電単価20.2円/kWhを基準点として使った。

2. 研究開発計画/(2) 研究開発内容

各KPIの目標達成に必要な解決方法を提案

研究開発内容	KPI	現状		達成レベル	解決方法	実現可能性 (成功確率%)
生 造船設計 管理	作業限界 波高: 2.5m (Hs)以上 達成	国内:TRL3 欧州:TRL9 日本国内では、風車建 設・メンテナンス専用船 (SOV)の設計・建造 実績はない。	\leftrightarrow	TRL8	・欧州先進知見取り込み体制の構築。・欧州技術に関する本邦関係者との検証体制の構築(国内研究機関)。	欧州企業との協調に基 づき実現性は高いと理解。 (80%)
2 ハイブリッド システム	燃費25%向上	国内: TRL3 欧州: TRL9 日本国内では、舶用向 けDCハイブリッドシステム の開発実績はない。	\longleftrightarrow	TRL8	欧州先進知見取り込み体制の構築本邦EV船舶ベンチャー企業や大手バッテリーメーカーとの協調体制構築。	欧州企業との協調に基 づき実現性は高いと理解。 (80%)
3 SOV活用に 基づくO&M 提案標準化	O&M (*) 稼働率保証 97%	国内:TRL4 欧州:TRL9 国内ではSOVに基づい たO&M計画実績がない。	\longleftrightarrow	TRL8	 風車メーカーと、当コンソーシアムSOVを活用した際のO&M提案について協議し、稼働率保証を改善したものを標準提案とする。 最終的には、風車メーカーと共同で洋上風力事業者に対し、風車O&M提案を実施することを目指す。 	風車メーカーとは利害が一致しており、協調関係を築いた上で共同提案を準備出来ると理解している。 (80%)

2. 研究開発計画 / 研究開発内容 (①造船設計)

KPI 作業限界2.5m以上 (有義波高)

開発内容

- SOVは、ダイナミックポジショニング(DP)システムに基づき洋上サイトにおいて定点保持を行ないながら、ギャングウェイを風車に接続した上で、安全に作業員を移送する必要がある。
- 今回、従来のSOV風車アクセス限界2.5mを改善し2.5m以上を達成することを目標としているが、これを実現する為には、DPシステムによる定点保持能力とギャングウェイの高い機能性が求められることとなり、サイト特性に適した船体構造の選定、スラスターシステム、アンチローリング、3 Dギャングウェイ(取り付け位置・高さ・機能性)の組み合わせを最適化する。
- 欧州では、SOV設計・建造・使用実績に基づき、従来の 風車アクセス限界2.5mを超えることは、技術的には改善 の余地があると分かってきており、今回、欧州の先進的な 知見を活用しながら、更なる最適化を図り、2.5m以上 の風車アクセスを目指すものである。
- SOV基本設計としては、欧州設計会社に依頼する予定である。今後、日本の海象・天候条件、並びに、サイト特性、運用方針を勘案し、最終的な基本設計を取り纏める考え。

独自性・新規性・他技術に対する優位性

- 当コンソーシアムが提案する最新鋭SOVが導入された場合には、冬季工事遂行が可能となることより大幅なEPC工程短縮が期待出来、且つ、冬季を含め年間を通じた安定したメンテナンス体制が構築出来ることとなる。これにより洋上風力事業者は様々な定量的なメリットを享受することとなり、国内洋上風力プロジェクトの事業性が格段に改善されることが期待出来る。
- 現在、国内洋上風力マーケットでは、CTVに基づき 1.5mまでの風車アクセスしか出来ないことより、当コン ソーシアムSOVが導入された場合には、競合他社に対し 圧倒的な優位性を確立出来ると理解している。

実現可能性・技術課題の解決見通し

- スラスターシステム、アンチローリングシステム、3 Dギャングウェイとどれも既存の技術であること、更に、欧州の先進知見をベースとして技術開発作業となることより、2.5mは超えられると予想しているが、今後の最適化検討と検証作業次第という状況。
- 一方、今回技術課題としては、DPシステムの機能性向上を図りつつ、同時に、ハイブリッドシステムの導入により燃費の向上・少力化を掲げており、その様なところに難しさがある。

2. 研究開発計画 / 研究開発内容 (②ハイブリッドシステム)

KPI 25%燃費向上

開発内容

- SOV向け効率性と即応性に優れた、DC(直流)グリッドによる次世代EVハイブリッドグリッドシステムの開発。
- 日本国内メーカーでは、現時点で舶用DCグリッドを提供 出来るメーカーはいないことから、船舶のEVシステムで先 行する欧州メーカーの事例なども参考としながら、DCグリッドシステムのシステムインテグレーションを行う。基本設計は、欧州造船設計に外注することを検討中。
- 欧州側の先行事例を見る限り、DPシステムの構成に大容量蓄電池を搭載し、それを積極的に活用することによって、最大で25%程度の省エネが可能となることが分かっている。
- 一方で、国内では、船舶が定点保持を行う為のダイナミックポジショニング(DP)システムに、大容量蓄電池を搭載した事例はなく、そのknow howや技術もない。
- 先行する欧州側のknow howを日本側のシステムインテグレーターに学ばせることで、日本国内でのシステムインテグレーションと調達を可能とすることを目指す。
- 舶用大容量蓄電池の国産調達:本邦で調達できる機器は、性能と価格がリーズナブルであれば、可能な限り本邦からの調達とする。現在、舶用大容量蓄電池のマーケットにおいて、国内メーカーのシェアは1%未満である。サイズ・重量面で不利なだけでなく、欧州や中国のメーカーと比較して、3~5倍程度の価格差がある。
- 国内某社製トラック用蓄電池を舶用に転用することで、 大幅にコストダウンを図り、欧州・中国製品と同程度の価格で調達出来ないか検討中。

独自性・新規性・他技術に対する優位性

- DCグリッドによる次世代EVハイブリッドグリッドシステムは、 国内で一般的なAC(交流)グリッドと比較して最大で 10%程度の効率向上が見込まれる。
- 今回、大容量蓄電池を活用した省エネ型DPシステムの開発を行うことで、(大容量蓄電池の無い)従来DPシステムと比較して、最大で25%程度の向上を目指している。
- 更に、舶用大容量蓄電池の国産調達に関しても、トラック用蓄電池を舶用に転用出来れば、従来の国産蓄電池と比較して欧州や中国製品と同等レベルの1/5程度の価格低減が図れる可能性がある。
- ・ 上記技術は、今後拡大が予想されているEV船のコア技術・要素であるが、CTV、タグボート、SOV、CLV等々多様な船舶への転用が出来ることとなり、競合他社に対し、大きな優位性を持つことが出来ると考えている。

実現可能性・技術課題の解決見通し

- DCグリッドによる次世代EVハイブリッドグリッドシステム、更に、大容量蓄電池を活用した省エネ型DP(定点保持)システムの開発というは、先行する欧州では、既に成功しており、商業化されている。
- 既存の技術や製品の組み合わせでインテグレーションがポイントとなるが、制御が課題であり、国内メーカーで対応困難であれば欧州品を採用してイングレーションを図ることとなる。
- 舶用大容量蓄電池の国産調達に関しては、候補となる 国内メーカーとは、舶用向け提供について基本的な方向 性は確認済みであり、価格・仕様、更に、舶用転用に際 してのルール適合等詳細を詰めていく必要がある。
- システムとしてはインテグレーションを図ることは可能であるが、国産品蓄電池を使用して燃費が向上出来るかは今後の検証次第。

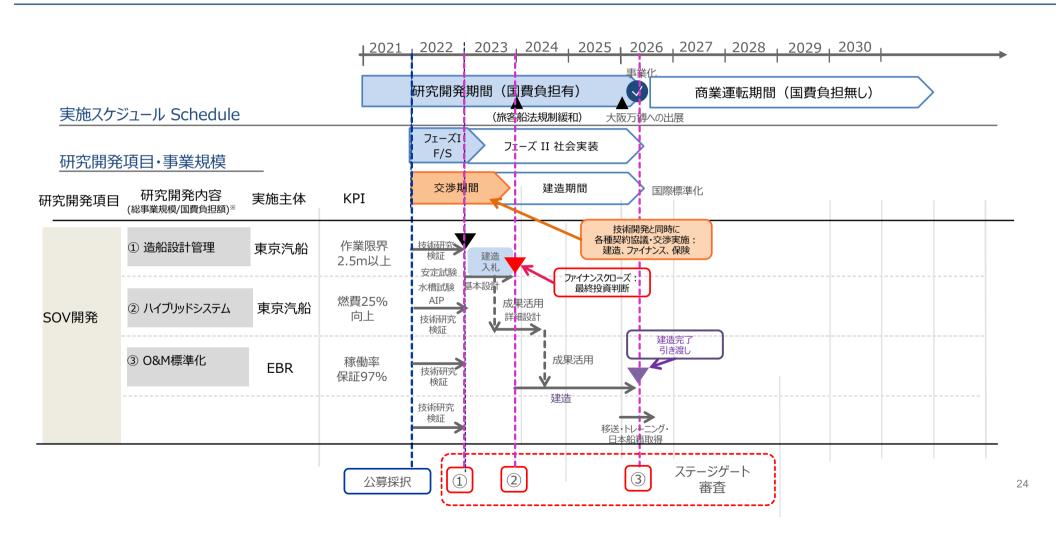
2. 研究開発計画 / 研究開発内容 (③O&M提案標準化)

SOV活用に基づくO&M提案標準化を目指す。

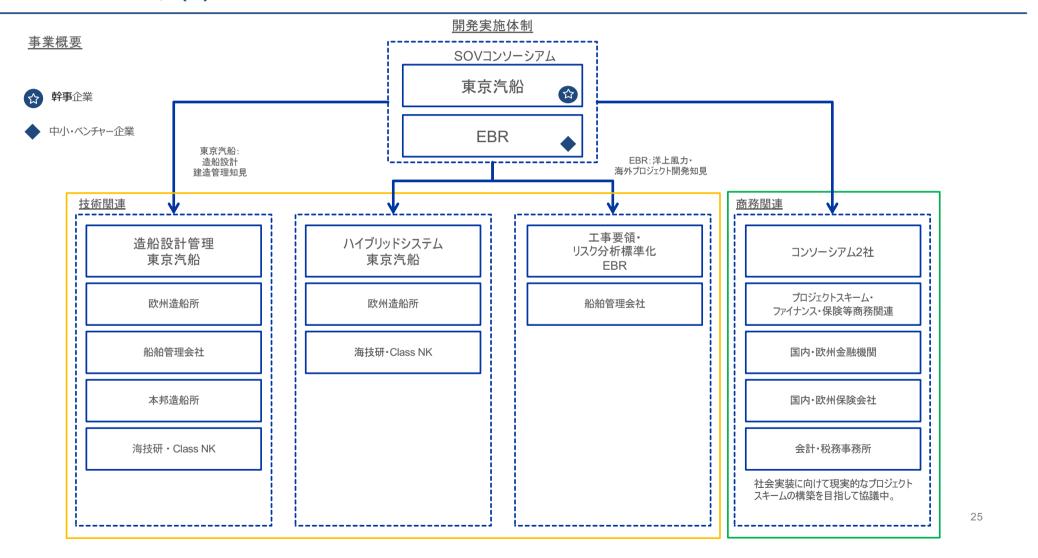
開発内容

- 当コンソーシアムSOV導入に基づき、風車メーカーと共に、 O&M提案の標準化を目指す。
- 風車メーカーにとっては、風車アクセスが2.5m以上まで出来ると、風車販売面で競合他社に対し下記差別化を図ることが出来る。
- 1) 短期納期(コミッショニング・試験を冬季に実施)
- 2) O&M稼働率保証の改善(冬季風車アクセスにより故障率が下がる)
- 3) O&Mコスト削減(O&M期間大幅短縮)
- ・ 風車メーカーは当コンソーシアムにとって長期用船顧客と なるが、顧客と共同で洋上風力事業者に対しO&M提案 を実施する。

独自性・新規性・他技術に対する優位性


- 2.5m Hs以上の風車アクセス率が、独自性と新規性そのものとなる。
- 国内には競合SOVがないことより、競合他社に対し、圧倒的な優位性を確保することになると理解。

実現可能性・技術課題の解決見通し


- 風車メーカー1社が近い将来(2026-27年頃までに)、 180本の風車を受注・供給する可能性が低く、その場合、 一隻のSOVを複数の風車メーカーやゼネコンでシェアする ことが予想される。
- この場合、共同使用を実現する為には、SOV使用の優先順位を決める欧州にはない特殊な契約スキームを開発する必要がある。
- 国内第1ラウンドの洋上風力事業者の公募結果に基づき、例えば、秋田地域にどの風車メーカーの風車が何本納入されるかによって、上記契約スキームを検討する予定。

2. 研究開発計画/(3) 実施スケジュール

SOV導入・開発全体スケジュール

2. 研究開発計画 / (4) 研究開発体制

2. 研究開発計画/(5)技術的優位性

SOVコンソーシアムメンバーそれぞれの強みや知見を総合しつつ世界最新鋭SOVを建造し、国際競争力の形成を目指す。

競合他社に対する優位性・リスク 研究開発項目 研究開発内容 活用可能な技術等 東証一部上場、国内タグボート最大手として東京湾で24隻のタグボート、並びに、洋上 • タグボート・カーフェリー・Crew Transfer Vesselに関する建造・保 造船設計管理 風力発電向けに7隻のCTVを運航。更に、グループ企業(東京湾フェリー)にてカーフェ 守•運転経験•知見 ハイブリッド リー運航。 担当: クルーオペレーション経験・知見 国内では唯一5年前からNEDO実証福島浮体式・千葉銚子着床式にCTVオペレーター 東京汽船 • 24時間オペレーション管理センター経験・知見 として参加してきており着実に洋上風力向け工事船知見を蓄積してきている。 舶用(タグボート) ハイブリッド開発の経験・知見(*) 2021年春から、秋田・能代港洋上風力プロジェクト向け建設作業の支援を目的に合計 *1:2013年、新潟原動機(現IHI 原動機)と共にタグボート向けハイブリッドシ 5隻のCTVを供与しており、実際の洋上風力建設現場でのオペレーション知見を蓄積し ステムを共同開発 てきている。又、4隻は新造船、1隻は欧州中古船を日本仕様に改造し運航しており、 http://www.tokvokisen.co.ip/company/news/2013/201310.pdf 欧州設計に基づくCTV建造実績(*2)や欧州船舶の改造実績がある。 2019年、F5ラボとの共にハイブリッドタグコンセプトデザイン共同開発。 • 洋上風力導入拡大に伴い新事業領域としてCTVに引き続き工事特殊船分野に取り組 https://www.e5ship.com/pdf/2019-10-15.pdf んでいるが、上記経験・知見より、競合他社に比し、洋上風力向け船舶運航実績として 先行しており、優位性を確立している。 * 2:BMT(英)CTV基本設計に基づきChoey Lee Shipyard(香港)にて建 造した欧州最新鋭CTV2隻含む。建造に際しては、Bernhald Schulteグループ会 社・EBRの支援を受けながら建造。 SOV導入· 国内外におけるインフラプロジェクト投資・建設・開発経験に基づき、欧州洋上風力マー 工事要領・リス 欧州海底ケーブル布設経験・知見 開発 ケットの最新知見や人脈を持ち込みながら国内洋ト風力プロジェクト向けにビジネスモデル ク分析標準化 欧州洋上風力発電プロジェクト開発経験・知見 の提案・開発をベンチャー企業として行なっている。 担当: CTV建造プロジェクトマネージメント経験・知見 秋田・能代洋上風力向けCTV造船契約の締結から日本への輸送/輸入・Class NK船 **FBR** 級証書・日本船籍取得まで一気通貫で従事した経験を有する。 洋上風力発電プロジェクト向け基礎・風車据付丁事要 領・リスク分析標準化作業経験・知見 欧州における実際の洋上風力プロジェクトへの参加し、現場経験がある企業や個人は未 だ少ない。その様な経験を活かしながら差別化を図っている。

2. 研究開発計画/(5)技術的優位性

SOVコンソーシアムメンバーそれぞれの強みや知見を総合しつつ世界最新鋭SOVを建造し、国際競争力の形成を目指す。

造船設計担当: 東京汽船

ホームページ: http://www.tokyokisen.co.jp/

・24隻のタグボートを運航 http://www.tokyokisen.co.jp/tugbort/list.html

・7隻のCTVを運航 JCAT ONE, JCAT TWO, JCAT THREE, JCAT TARO PORTCAT ONE, PORTCAT TWO, PORTCAT THREE http://www.tokyokisen.co.jp/service/ctv.html

ハイブリットタグ"銀河" (東京汽船株式会社)

フェリー"しらはま丸" (東京湾フェリー株式会社)

小型船舶型CTV"PORTCAT TWO / THREE" (東京汽船株式会社)

大型型CTV"JCAT THREE" (東京汽船株式会社)

大型型CTV"Red Star" (Akita OW Service株式会社)

3. イノベーション推進体制 (経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、専門部署に複数チームを設置

コンソーシアムメンバー個別

組織内体制図

3. イノベーション推進体制/(2)マネジメントチェック項目(①経営者等の事業への関与)

経営者等によるSOV事業への関与の方針

コンソーシアムメンバー個別

経営者等による具体的な施策・活動方針

経営者のリーダーシップ

(当該事業の位置付け)

- 今後、日本国内におけるエネルギー構造変革の中で、弊社は、再生可能エネルギー、特に、洋上風力発電に特化したベンチャー企業であり、当該事業を、正に、中核事業として位置付けている。
- 洋上風カインフラビジネスに着目し、これまで秋田・能代港洋上風カプロジェクト向けCrew Transfer Vessel建造・調達や、マリンコーディネーションサービスに関わる業務を実施してきており、一つ一つ企業としての価値・と機能性を高めることに尽力中。

(当該事業の発信)

- 弊社は、maritime service platform(マリンサービスプラットフォーム)の構築を目指しており、その実現に向け、本邦企業との協調体制構築を目指している。
- 最近は、大学から講演の要請も受ける様になり、その様な公の場でも、当該事業の必要性や重要性を訴えていきたいと考えている。

(ガバナンスイノベーション・イノベーションマネジメントシステム)

イノベーション・マネージメントシステムに関する国際規格(ISO56002)他を参照し、適宜理解に努め、その試行錯誤を奨励する組織制度や組織文化を醸成することを目指し度い。

(事業モニタリング・管理)

- 経営層自ら当該事業に直接取り組む考えであり、モニタリングや進捗管理は十分出来ると理解している。
- 当該事業の共同開発パートナーとの連携を十分図り、パートナー含め情報の共有化を徹底し、当該事業推進の透明性を高めていく考え。
- 当該事業推進に際しては、適宜、国内外の知見者の意見を幅広く取り入れ進めていく考え。

(経営者への評価・報酬)

今後、人員増強を図っていく予定であるが、経営陣にはストックオプションを付与し、適宜、当該事業実現に向けてのインセンティブを用意する考え。

3. イノベーション推進体制/(3) マネジメントチェック項目(②経営戦略における事業の位置づけ)

SOV事業を経営戦略の中核と位置づけ、広く情報発信する

コンソーシアムメンバー個別

(事業の継続性の取り組み)

・ 当該事業は、正に弊社ビジネスの中核であり、当該事業を実現に向けて継続することが、会社存続と企業価値の創出に繋がることとなる。

(ステークホルダーに対する公表・説明)

- 今後、公募採択された場合は、自社ホームページを通じ、対外的に当該事業の取り組みや進捗について公表していく考え。
- 事業計画や事業報告書の中においても当該事業を明示し、中核事業であることを広く公表していく。
- 今後、資金調達過程において、当該事業の将来性・リスク・実現性を金融機関やステークホルダーに対して説明していく予定。その際、当該事業は、国内における洋上風力発電 プロジェクトの導入・拡大、さらに、発電コストの低減化に不可欠と理解しており、工事特殊船の必要性・重要性を訴えていく。また、最終的には、国民に対し、再生可能エネルギー を主電源化した安価、かつ、安定した電気供給システムを構築することに貢献し度いと考えている。

3. イノベーション推進体制/(4)マネジメントチェック項目(③ 事業推進体制の確保)

機動的に経営資源を投入し、着実に社会実装まで繋げられる組織体制を整備

(経営資源の投入方針)

- フェーズ1実施に際しては、現在、増資引き受け先候補企業と協議中であると同時に、各種公的なベンチャー企業支援制度を活用し、資金調達を進める予定。
- フェーズ2実施に際しては、ベンチャーキャピタルを通じての資金調達を検討中。

(専門部署の設置)

- 当該事業推進を最優先とする組織作りを行なっていく考え。組織作りに際しては、これまでに構築したエネルギー関連業界の人的ネットワークを活かして、国内・海外風力マーケット における風力EPC, 風車、O&M, ファイナンス, 保険の分野から各々経験者を聘し度い。
- 更に、工事要領やリスク分析標準化作業に際しては、大学機関(東京大学等)との共同研究により、若手・学生に再生可能エネルギーの最先端の状況に触れる機会を創りたい。

4. その他

4. その他/(1) 想定されるリスク要因と対処方針

リスクに対して十分な対策を講じるが、長期用船契約締結が困難な場合、建造価格が予算に入らない等の事態に 陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

社会実装(経済社会)におけるリスクと対応

その他(自然災害等)のリスクと対応

- 性能未達リスク:欧州にて各種船舶設計・建造実績がある企業に外注していく。又、合わせて、第3者に、コンピューターシミュレーション(CFD解析)、水槽試験を実施して貰う。基本設計に関し、船級基本承認を取り付ける。
- 売上減少リスク:信用力ある企業と長期で用船契約を 締結する。
- 運航リスク:運航経験あるオペレーターに依頼する。
- 完丁リスク:建造契約の中で、遅延ペナルティーを課す。
- 費用増減リスク: CAPEX:建造契約内でヘッジする。 OPEX:O&M契約内でヘッジする。
- 性能リスク:造船所に対し性能未達ペナルティーを課す。
- スポンサーリスク:出資金前払い。
- 為替リスク:金融機関にヘッジする。
- 金利変動リスク:金融機関にヘッジする。
- 等。

・ 台風・地震・落雷・洪水・津波・竜巻によるリスク:自然 災害保険によりヘッジを図る。又、自然災害に加え、船 舶アセットに対する物損保険、船舶の故障で用船料が 取得出来ない場合の利益を補填する利益保険、従業 員・作業員に関する労災保険等、プロジェクトファイナン ス・ファイナンスリース締結時金融機関が要請する全ての 保険パッケージにより、各種用船事業のリスクヘッジを図る。

事業中止の判断基準:主に、下記状況となった場合は最終投資判断に至らない場合が想定される。

- 日本やアジアマーケットにおいて、洋上風力発電プロジェクトの導入・拡大が予想以上に進まない等の理由により、長期用船契約締結が、困難となった場合。建造費用が、経済合理性を満足する予算レベルに収まらない場合。
- 経営判断により、計内承認が取れない場合。