事業戦略ビジョン

実施プロジェクト名:「製鉄プロセスにおける水素活用」プロジェクト

- 1. 高炉を用いた水素還元技術の開発
 - ②外部水素や高炉排ガスに含まれるCOっを活用した低炭素技術等の開発

実施者名:一般財団法人 金属系材料研究開発センター、

代表名:理事長 福田 和久

(コンソーシアム内実施者:日本製鉄株式会社(幹事企業)、JFEスチール株式会社、

株式会社神戸製鋼所)

目次

- 0. コンソーシアム内における各主体の役割分担
- 1. 事業戦略・事業計画
 - (1) 産業構造変化に対する認識
 - (2) 市場のセグメント・ターゲット
 - (3) 提供価値・ビジネスモデル
 - (4) 経営資源・ポジショニング
 - (5) 事業計画の全体像
 - (6) 研究開発・設備投資・マーケティング計画
 - (7) 資金計画
- 2. 研究開発計画
 - (1) 研究開発目標
 - (2) 研究開発内容
 - (3) 実施スケジュール
 - (4) 研究開発体制
 - (5) 技術的優位性
- 3. イノベーション推進体制(経営のコミットメントを示すマネジメントシート)
 - (1) 組織内の事業推進体制
 - (2) マネジメントチェック項目① 経営者等の事業への関与
 - (3) マネジメントチェック項目② 経営戦略における事業の位置づけ
- 4. その他
 - (1) 想定されるリスク要因と対処方針

0. コンソーシアム内における各主体の役割分担

1.高炉を用いた水素還元技術の開発/②外部水素や高炉排ガスに含まれるCO2を活用した低炭素化技術等の開発

日本製鉄 (幹事会社)

日本製鉄が実施する研究開発の内容

① S-COURSE50操業技術開発

- ③ 要素技術開発
- CO2分離回収技術
- バイオマス活用技術
- 廃プラ利用拡大技術
- ④ 全体プロセス評価

JFEスチール

JFEが実施する研究開発の内容

- ② カーボンリサイクル高炉操業技術開発
- ③ 要素技術開発

- 高炉一貫プロセスにおける冷鉄源活用技術
- ④ 全体プロセス評価

神戸製鋼所

神戸製鋼が実施する研究開発の内容

- ③ 要素技術開発
- 羽口内燃焼の適正化
- バイオマス活用技術
- ④ 全体プロセス評価

金属系材料研究開発センター (JRCM)

JRCMが実施する研究開発の内容

④ 全体プロセス評価

(実施プロジェクトの目的:製鉄プロセスからCO2排出50%以上削減を実現する技術の実現)

1. 事業戦略·事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識

世界的な環境意識の高まりによりカーボンニュートラル鋼材に関する需要が急拡大すると予想

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

• 地球環境問題の深刻化、意識の高まりに伴うカーボンニュートラ ル素材需要の生成および増加。

(経済面)

- 水素活用、水素環元製鉄、大型電気炉などの新規設備投資 効果
- カーボンニュートラル素材という新たな市場の創出

(政策面)

2050年カーボンニュートラル宣言宣言と、これを実現するための 種々の政策の実施

(技術面)

- 世界に先駆け水素還元製鉄技術を確立、コスト競争力のある カーボンニュートラル鋼材を供給
- 市場機会:

カーボンニュートラル素材を供給できれば、既存の鋼材市場と一線を画 した新たな市場の創出が可能と期待→認識に変化はなし

社会・顧客・国民等に与えるインパクト: 世界に先駆け水素還元製鉄技術を確立するとともに、コスト競争も実 現できれば日本発の技術として世界展開するとともに、鉄鋼業が我が 国基幹産業としての地位を継続することに寄与

カーボンニュートラル社会における産業アーキテクチャ

カーボンニュートラル 社会の実現

日本も含め各国が2050年 ないし2060年のカーボン ニュートラル実現を宣言

鉄鋼業の対応

【脱炭素を志向し生産プロセスを転換】

現状:我が国全体のCO₂排出量の約 14%を排出

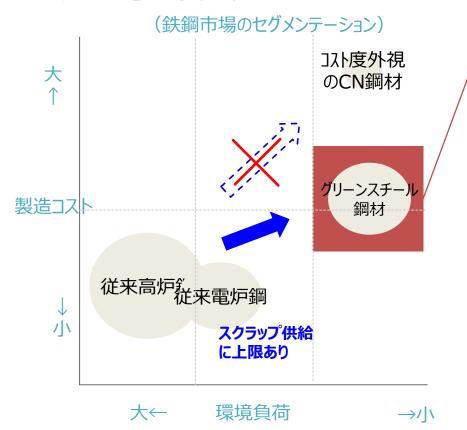
- ・鉄鉱石をコークス(炭素)で還元するた め、大量にCO。を生成
- ・相対的にCO。排出の少ない電炉生産 のためにはスクラップ供給が不十分

将来:水素還元技術適用によりCO。 排出を大幅に削減可能な製鉄 プロセスを確立

> ・我が国の条件を踏まえ、低品位鉱石 を使用しながら高級鋼の製造可能な 技術確立が必要

当該変化に対する経営ビジョン:

我が国鉄鋼業のカーボンニュートラル実現に寄与するとともに、カーボンニュー トラル社会の実現に関して、金属系素材関連分野での産学官連携研究 開発・研究開発成果の普及の我が国における中核的地位を確立する。



1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット

鉄鋼市場のうちカーボンニュートラル鋼材(グリーンスチール)をターゲットとして想定

セグメント分析

2030年の実装にめどをつけるため、高炉水素還元技術とシャフト炉-電気炉技術の開発に注力

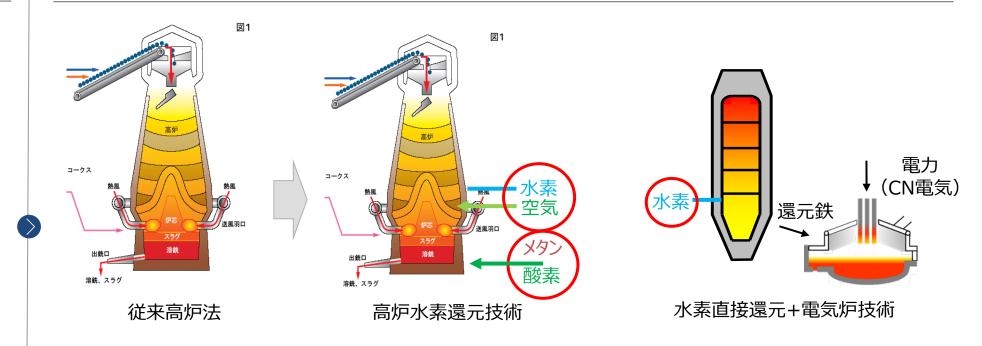
ターゲットの概要

市場概要と目標とするシェア・時期

• コストを度外視した少量生産のカーボンニュートラル(CN)鋼材ではなく、量産 鋼として高級鋼の製造を実現し、中長期的に鉄鋼需要の内に一定のシェア を確立する。

需要家	主なプレーヤー	課題	想定ニーズ
鉄鋼業	高炉各社	CN鋼材生産技術確立水素多量安定供給グリーン電力供給	• CN鋼材の供給
自動車 産業	自動車 各社	• CN高級鋼(自動車 用鋼材)の製造技術 確立	• CN鋼材の供給

- ・他業界(電機、建設)でもCN素材需要に関しては同様の動き。
- ・環境影響評価により各製品の素材置き換えや、供給者の取捨選択が進む可能性あり


1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル

技術情報の収集や評価を通じてカーボンニュートラル製鉄の実現に寄与する事業を創出/拡大

社会・顧客に対する提供価値

- カーボンニュートラル製鉄 に資する国内外技術情報の収集と整理・普及
- 取り組み技術の総合評価とテーマ間連携
- 高炉系技術と水素直接 - 還元
- 水素直接還元と大型電 気炉

ビジネスモデルの概要(製品、サービス、価値提供・収益化の方法)と研究開発計画の関係性

- ・低品位鉱石を使用しながら高級鋼の大量生産が可能で、カーボンニュートラルが実現できる製鉄プロセスを実現 そのためには水素還元技術(高炉法、水素直接還元)、溶解精錬技術の開発が必要
- ・当センターでは関連技術情報の収集や開発技術の総合プロセス評価を通じて、高炉水素還元技術と水素直接還元+電気炉技術を比較、それぞれの最適化に寄与するとともに、両者の棲み分けに反映。効率的な開発、開発期間の短縮などに寄与。

1. 事業戦略・事業計画/(4)経営資源・ポジショニング

コンソーシアムの強みを活かして、社会・顧客に対してグリーン鋼材という価値を提供

コンソーシアムの強み、弱み(経営資源)

ターゲットに対する提供価値 (グリーン鋼材)

- 各国の自動車メーカーなどがサプライチェーンの カーボンニュートラル化を進めていくと宣言。
- 製造時のCO₂発生量を低減させたグリーン鋼材 の提供にかかわる要望が拡大
- エシカル消費を指向するカスタマーの満足度を向 上させ、新たな価値を提供する。

コンソーシアムの強み

- 低CO₂にかかわる技術蓄積
- 世界最高レベルの省エネ製鉄所運用
- COURSE50などの過去の低CO₂プロジェクトを実行 してきた経験
- 製鉄・製鋼にかかわる技術者が多く在籍
- コンビナートが周辺に立地した臨海製鉄所の保有 (化学・エネルギー等の業種が周辺に立地)

コンソーシアムの弱み及び対応

- 周囲に高品質鉱石生産地が少ない
- ケリーン電力・水素の価格高・不足
- 水素インフラ脆弱性

・GI基金を活用した技術開発

・公的なインフラ基盤等の整備

コンソシーアム外の企業に対する比較優位性

(現状)

技術

- 過去の低CO₂プロジェクトへの 取り組み(COURSE50など)
- 世界最高レベルの省エネ製鉄 所運用

顧客基盤/サプライチェーン

- 需要家との密な連携体制
- 低価格豪州鉱石の使用

その他

- コンビナートに隣接した臨海製 鉄所用地の保有
- 製鉄・製鋼にかかわる技術者 が多く在籍

(将来に向けた取り組み)

- 国プロ(オールジャパン)技術開・需要家との関係強化、理 発への積極協力
 - 解活動(コスト負担等の議
 - 低品位・低価格豪州鉱サ プライヤーとの協力模索
- コンビナートの他業種(化) 学・エネルギー等)との連携
- 新規技術者の採用・育成 強化

欧州:域内で高品質鉱石が産出され、サプ ライチェーン的に有利。

⇒本プロジェクトを用いて特に豪州などで産出 される低品位鉱石に関する技術開発を加速

中国:日本と同様に低品位豪州鉱を使用、 宝武 (Bao)で 先進高炉の開発計画あり。 ⇒コンソーシアムとして先行している COURSE50などの過去知見を活用しながら 開発を実施。

1. 事業戦略・事業計画/(5) 事業計画の全体像

10年間の研究開発の後、2030年頃の事業化、その後の投資回収を想定

投資計画

- ✓ 本事業終了後、2030年頃の事業化を目指す。
- ✓ カーボンニュートラル製造プロセスの研究開発・実装により、鋼材市場のグリーンスチール化に対応していく。

	2021年度	• • •	2030年度					
売上高	-	• • •	-	2030年以降の事業化、その後の投資回収を想定				
研究開発費	約4,363億F	約4,363億円 (本事業の支援期間の参画企業合計)		実機化設備費用で数兆円規模を想定				
取組の段階		研究開発・実証試験		社会実装				
CO ₂ 削減効果	-	• • •	-	各社実装の進行に伴い 1,000万t/年規模で削減				

1. 事業戦略・事業計画/(6)研究開発・設備投資・マーケティング計画

研究開発段階から将来の社会実装(設備投資・マーケティング)を見据えた計画を推進

研究開発·実証

設備投資

マーケティング

取組方針

- 国内高炉メーカーが協力してコンソーシアムを結成。各社の知見を総合的に活用。
- 現在の技術レベル・日本の地政学的な特色(豪州鉱山に近いこと)に鑑み、高炉/還元炉/電気炉のすべてに対して、複線的に開発を実施
- 開発課題を解決するために小規模実験設備から大規模設備を順次建設
- 実験設備を各社で分担して建設
- 実験により得られた成果はコンソーシアム 内での情報交流を実施
- 実装設備に関しては、グリーン鋼材需要、 カーボンフリー水素/電力の調達状況、 各プロセスの経済合理性に鑑みながら 各社で建設を判断

- グリーン鋼材にかかわる国内ガイドラインの整備(国際標準化に向けて)
- 需要家に対するグリーン鋼材に関する 理解活動の実施
- 海外への積極的な発信、学会等での 積極的な広報活動の実施
- ライセンスビジネスによる技術の収益化 に関しても検討

国際競争 上の 優位性

- Course50プロジェクトの知見・設備を 活用。
- コンソーシアム内の協力体制により、開発期間・MP・費用を削減
- 各社に製鉄・製鋼にかかわる技術者が 多く在籍、学識経験者の知見も活用し た開発体制が構築可能

- コンソーシアム内での情報共有により、実 装化可否判断を効率的に実施
- 既存製鉄所インフラの一部活用

- 長期間にわたり醸成された需要家との 信頼関係
- 鉄鋼関連の標準(ISO14030-3)
 などの作成過程において、議論をリードしてきた実績

1. 事業戦略・事業計画/(7)資金計画

国の支援に加えて、本事業期間において参画企業で約2,428億円の自己負担を予定

【本事業に係る事業費および負担額(参画企業合計)】

	2021 年度	2022 年度	2023 年度	2024 年度	2025 年度	2026 年度	2027 年度	2028 年度	2029 年度	2030 年度	
事業全体の資金需要	約4,363億円+実用化費用※2							本事業期間の開発完了の後、自己負担にて、次ステップの試験操業を実施する予定			
うち研究開発投資	約4,363億円										
国費負担 ^{※1} (委託/補助)	約1,935億円										
自己負担				約2,4	28億円	+実用(匕費用				

※1:インセンティブ額が全額支払われた場合

※2:早期実用化が可能となった場合は資金需要および自己負担分はさらに増額される

2. 研究開発計画

2. 研究開発計画/(1) 研究開発目標

「製鉄プロセスからCO₂排出50%以上削減を実現する技術を実証」というアウトプット目標を達成するために必要な複数のKPIを設定

研究開発項目

- 1.高炉を用いた水素還元技術の開発
- ②外部水素や高炉排ガスに含まれるCO₂を活用した低炭素化技術等の開発

アウトプット目標

事業開始時 のTRL: 4 *

製鉄プロセスからCO2排出50%以上削減を実現する技術を実証

研究開発内容

- 1 SG-1 S-COURSE50 操業技術開発
- 2 SG-2 カーボンリサイクル 高炉操業技術開発
- 3 SG-3 要素技術開発
 - 羽口内燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - 廃プラ利用拡大技術 等

4 SG-4 全体プロセス評価・検討

KPI

- ・アウトプット目標に寄与するCOっ削減
- ・アウトプット目標に寄与するCO2削減

- 材料耐熱温度以下の羽口表面温度
- ・分離回収コストのさらなる低減
- ・廃棄物系炭化物・木質系炭化物による PC置換
- ・脱塩素化・プラ処理量増
- ・製鉄所全体の物質・エネルギー収支モデル によりCO₂削減50%以上の効果を評価

KPI設定の考え方

- ・還元材の水素系ガスへの代替によるC消費量削減
- ・送風顯熱増加による熱補償
- ・高炉ガスのカーボンリサイクルによるCOっ排出削減
- ・酸素高炉化によるカーボンリサイクル率アップ
- ・羽口内の安定燃焼の継続
- ・分離回収エネルギー低減によるランニングコスト削減
- ・製鉄用炭材として必要な発熱量確保/微粉炭代替として必要な置換率確保
- ・減容化/異物処理や脱塩素によるプラ処理量拡大
- ※SG3の技術組合せでCO₂削減目標を補完
- $\cdot 1$ -①とも一貫し、同一基準で CO_2 削減技術を評価 %SG1-3の組合せで CO_2 削減50%以上の技術を実証
- *: 経済産業省製造産業局:「製鉄プロセスにおける水素活用」プロジェクトに関する研究開発・社会実装計画 令和3年9月14日 より

2. 研究開発計画/(2) 研究開発内容

各KPIの目標達成に必要な解決方法を提案

- 1 SG-1 S-COURSE50 操業技術開発
- 2 SG-2 カーボンリサイクル 高炉操業技術開発
- 3 SG-3 要素技術開発
 - 羽口内燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - 廃プラ利用拡大技術
- ◆ SG-4 全体プロセス評価・検討

- **KPI**
- ·CO₂削減

·CO₂削減

- •羽口表面温度
- ・分離回収コスト
- ·PC置換
- ・脱塩素化率・廃プラ処理量
- 各技術のエネルギー収支,CO₂ 削減評価

解決方法

- 還元材の水素系ガスへの代替
- 送風顕熱増加による熱補償
- 高炉ガスのCリサイクルによるCO₂排出削減
- 酸素高炉化によるCリサイクル率アップ

- 材料、構造の適正化
- ベンチ試験による液組成や運転条件最適化 独自のCO。吸収・放散促進触媒活用
- 廃棄物の選定およびアッシュ分離技術の確立 高炉羽口吹き込み技術の確立
- 効率的な処理プロセス(昇温/混錬方法/異物混入対策等)とスケールアップの検討
- モデルー貫製鉄所物質・エネルギー収支モデルの構築

*2. 研究開発計画/(2) 研究開発内容(これまでの取組)

各KPIの目標達成に向けた個別の研究開発の進捗度

研究開発内容

- 1 SG-1 S-COURSE50 操業技術開発
- 1)S-COURSE50要素技術
- ・数学モデルによる基本原理 検証
- ・水素等昇温設備の開発
- ・レースウェイ内燃焼解析
- 2)小型試験高炉での検証 試験

- 2 SG-2 カーボンリサイクル (CR) 高炉操業 技術開発
- 1)CR高炉要素技術
- ・反応・伝熱挙動評価およ び操業設計
- ・CR高炉羽口の技術開発
- 2) 高炉での部分評価試験
- 3) CR小型試験高炉での プロセス原理検証試験

これまでの(前回からの)開発進捗

- ・S-COURSE50小型試験高炉(12m³)を対象にプロセス操作を検討し、2022年 度実施試験条件のCO2削減量見通しと、試験操業の諸元設計を実施した。
- ・S-COURSE50中規模試験高炉ならびに水素昇温設備の設置場所候補地 (製鉄所)を選定中。
- ・運動モデルに燃焼モデルを導入した、プロトタイプモデルの構築を開始した。 また、S-COURSE50条件に適した反応機構の調査を開始した。
- ・高温水素と微粉炭の複合吹込みに供する羽口の製作を完了し、昇温した水素ガス吹込み(第1段階)による操業試験を実施した。
- ・水素吹込量増量に向けた設備の設計開発を実行中。
- ・反応速度を評価する熱重量測定装置、溶融滴下挙動を評価するCR高炉炉内 反応模擬炉の基本仕様を決定し、設計を開始した。 またこれらを反映する高炉数値モデルの構築を開始した。
- ・シャフト部からの予熱ガス吹込みを模擬したガス流れ冷間実験を行った。
- ・羽口先でのメタン燃焼挙動を評価するCR高炉羽口先燃焼模擬炉の設計を開始した。ガス流れ観測を行う羽口冷間実験装置の仕様検討を開始した。
- ・京浜第2高炉都市ガス吹込みテストの実施計画の策定を開始した。
- ・CR小型試験高炉の設置場所を東日本製鉄所・千葉地区に決定し、 150m³規模のCR小型試験高炉の建設計画を推進した。

進捗度(◎/○/△/×)

):

計画通り進捗

 C

計画通り進捗

*2. 研究開発計画/(2) 研究開発内容(これまでの取組)

各KPIの目標達成に向けた個別の研究開発の進捗度

研究開発内容

- 3 SG-3 要素技術開発
- 1)羽口内燃焼適正化

- 2)CO2分離回収技術
- ・高性能吸収液の開発
- ・実ガス試験による技術検証、 安定操業技術開発
- 3)バイオマス活用技術
- ・バイオマス炭材の活用技術 開発
- ・廃棄物系炭化物の活用 技術開発
- 4)廃プラの利用拡大技術

- 4 SG-4 全体プロセス 評価・検討
- ・プロセス総合評価

これまでの(前回からの)開発進捗

- ・羽口部およびランス部のCFD(数値流体体力学)モデルを作成し、ベースとなる微粉炭吹込みの流動燃焼計算とランス部伝熱計算が安定して実施できることを確認した。
- ・微粉炭と水素の複合吹込みの燃焼挙動に対する操業条件の影響を評価中。
- ・吸収液開発の対象とする非水溶媒群をスクリーニングにより決定した。
- ・試験装置の製作を進めるとともに、耐腐食剤選定のスクリーニングを開始した。
- ・吸収液プロセスのモデル化によるシミュレーション法の検討を開始した。
- ・ベンチ試験の吸収液を選定し、使用するベンチ試験機の仕様検討を開始した。
- ・性状の異なるバイオマスを入手し、成分分析とサイズ・密度、強度を評価した。 脱気性・燃焼性・粉砕性の評価を開始し、石炭と比較予定である。
- ・アジア圏の炭化候補廃棄物の取扱い実態調査として、ごみ発生量とその処理の 仕方と抱えている課題観などの情報を調査し、活用ポテンシャルを評価した。
- ・廃プラスチックの減容化・脱塩素プロセスの技術課題の整理を実施するとともに、 廃プラスチック処理と事前処理について検討調査を開始した。
- ・メーカー試験先の選定を完了し、脱塩素影響要因調査の試験を計画中。
- ・モデル製鉄所を想定し、製鉄所内各工程のプロセス諸元の収集に着手した。
- ・物質・エネルギー収支計算シミュレーターを軸として、他テーマと同一基盤による 製鉄所一貫の物質・エネルギー収支を検討する体制を構築した。

進捗度(◎/○/△/×)

計画通り進捗

計画通り進捗

0

計画通り進捗

0

計画通り進捗

0

計画诵り進捗

*2. 研究開発計画/(2) 研究開発内容(今後の取組)

個別の研究開発における技術課題と解決の見通し

研究開発内容

- 1 SG-1 S-COURSE50 操業技術開発
- ・数学モデルによる基本原理 検証
- ・水素等昇温設備の開発
- ・レースウェイ内燃焼解析
- ・小型試験高炉による検証 試験
- 2 SG-2 カーボンリサイクル (CR) 高炉操業 技術開発
- ・反応・伝熱挙動評価および操業設計
- ・CR高炉羽口の技術開発
- ・ 高炉での部分評価試験
- ・CR小型試験高炉でのプロセス原理検証試験
- 3 SG-3 要素技術開発

4 SG-4

評価・検討

- ・羽口内燃焼適正化
- ·CO₂分離回収
- ・バイオマス活用
- ・廃プラ利用拡大
- 全体プロセス・プロセス総合評価

残された技術課題

- ・高炉数学モデルの解析結果と小型試験高炉の操業結果の知見の蓄積による、 高炉プロセスの操作方法の見通し取得
- ・水素等昇温設備の基本仕様を決定
- ・総括燃焼反応モデル開発および羽口の基本構造の提示
- ・加熱した水素系ガスを小型試験高炉に吹込む操業試験の継続実施により、KPI 達成する実機適合化技術の見通し獲得
- ・CR高炉炉内反応模擬炉等の設計製作とそれらの試験評価によるCR高炉の適 正操業諸元の設計
- ・CR高炉羽口先燃焼模擬炉の製作と評価試験
- ・高炉での部分評価試験の実施
- ・CR小型試験高炉の設計・建設と操業試験による適正操業条件の決定
- ・S-COURSE50 およびカーボンリサイクル高炉での適正羽口燃焼条件の明確化
- ・分離回収エネルギー削減を達成し得る混合溶媒系吸収液の開発 開発した新規混合溶媒系吸収液の実用化に向けた実機イメージの明示
- ・バイオマス粉の搬送性・燃焼性の評価と所定のPC置換率
- ・炭化候補廃棄物の活用ポテンシャル評価、アッシュ分離性評価と製鉄プロセス適用方法の提案
- ・減容化処理と異物処理や脱塩素による廃プラ処理量の拡大
- ・シミュレータへの各検討技術内容の取り込みと、モデルの精度向上
- ・信頼度の高いCO2排出削減量の導出手法の構築

解決の見通し

計画通り実施予定

計画通り実施予定

計画通り実施予定

計画通り実施予定

(参考)研究開発内容1-②

1. 高炉を用いた水素還元技術の開発 ②外部水素や高炉排ガスに含まれるCOっを活用した低炭素化技術等の開発

事業の目的・概要

2030年までに、中規模試験高炉(500m3級以上)において、外部水素や高炉排ガスに含まれるCOっを活用した低炭素技術の開 発に加え、バイオマスや還元鉄などを一部原料として活用するなど、あらゆる低炭素化技術を組み合わせることにより、高炉法において 製鉄プロセスから CO_2 排出を50%以上削減を実現する技術を実証。

- 要素技術開発および小規模試験高炉(水素直接吹込み:12m³、カーボンリサイクル高炉:150m³規模)での検証試験
- 中規模試験高炉(500m³級以上)での実証実験

※太字:幹事企業 実施体制

日本製鉄株式会社、JFEスチール株式会社、株式会社神戸製鋼所、 一般財団法人金属系材料研究開発センター

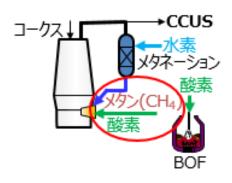
事業期間

2021年度~2030年度(10年間)

事業規模等

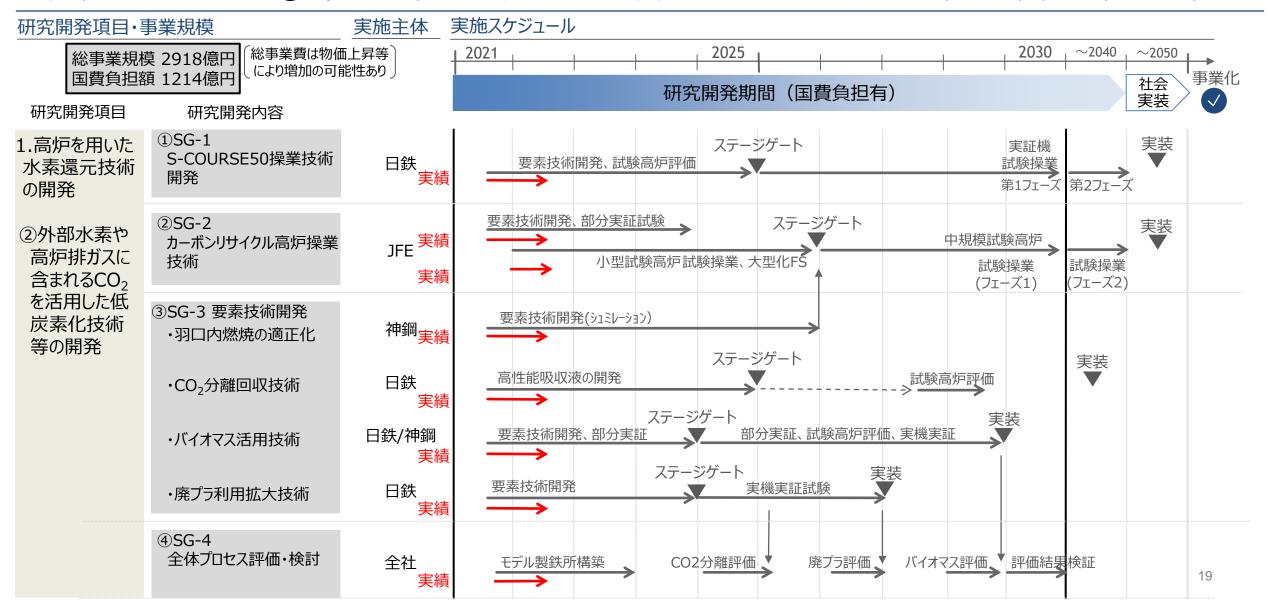
事業規模(①+②) : 約2918億円 支援規模(①+②)*:約1214億円

*インセンティブ額を含む。今後ステージゲートで事業進捗などに応じて変更の 可能性あり

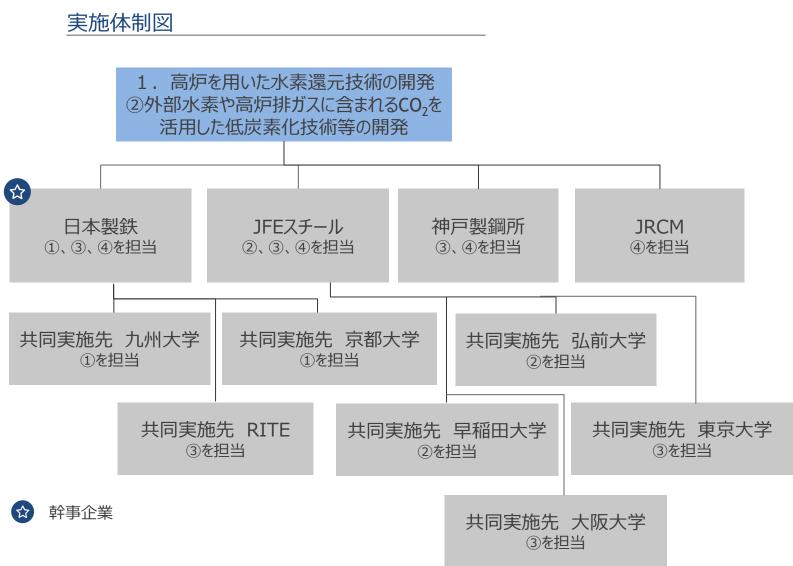

補助率など: ①委託 → ②2/3補助 (インセンティブ率は10%)

事業イメージ

従来型高炉技術



技術②(水素間接吹き込み) ※メタネーション


2. 研究開発計画/(3) 実施スケジュール

研究開発項目:1-②外部水素や高炉排ガスに含まれるCO2を活用した低炭素化技術等の開発

2. 研究開発計画/(4) 研究開発体制

各主体の特長を生かせる研究開発実施体制と役割分担を構築

各主体の役割と連携方法

各主体の役割

- 研究開発項目全体の取りまとめは、日本製鉄が行う
- 日本製鉄は、①S-COURSE50操業技術開発と③要素技術開発、 ④全体プロセス評価・検討を担当する
- JFEスチールは、②カーボンリサイクル高炉操業技術開発と③要素技術開発、④全体プロセス評価・検討を担当する
- 神戸製鋼所は、③要素技術開発、④全体プロセス評価・検討を 担当する
- JRCMは、④全体プロセス評価・検討を担当する
- 九州大学は、①S-COURSE50操業技術開発を担当する
- 京都大学は、①S-COURSE50操業技術開発を担当する
- RITEは、③要素技術開発を担当する
- 早稲田大学は、②カーボンリサイクル高炉操業技術開発を担当する
- 弘前大学は、②カーボンリサイクル高炉操業技術開発を担当する
- 東京大学は、③要素技術開発を担当する
- 大阪大学は、③要素技術開発を担当する

研究開発における連携方法

- 定例打合せの実施
- 製鉄プロセスにおける水素活用プロジェクト4テーマで定期的な連携会議を実施し、製鉄業における一貫した整理と総合評価を実施

2. 研究開発計画/(5)技術的優位性

国際的な競争の中においても技術等における優位性を保有

研究開発項目

- 1. 高炉を用いた 水素還元技術 の開発
- ②外部水素や高 炉排ガスに含ま れるCO₂を活用 した 低炭素化 技術等の開発

研究開発内容

- ¹ SG-1 S-COURSE50操業 技術開発
- 2 SG-2 カーボンリサイクル高炉 操業技術開発
- 3 SG-3 要素技術開発
 - 羽口燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - ・廃プラ利用拡大技術

活用可能な技術等

- 高炉シミュレーションモデル
- 高温水素ガスの吹込み技術
- 酸素高炉の操業技術
- 高炉への都市ガス吹込み技術

- 高炉PCI操業技術
- 混合溶媒系吸収液開発技術 CO₂吸収·放散促進触媒技術
- 高炉PCI操業技術
- 既存廃プラ処理設備
- ◆ SG-4全体プロセス評価・検討
- 製鉄所物質・エネルギー収支データ およびモデル

競合他社に対する優位性

優位性


- 高炉内現象を高精度で評価しうる高炉 総合プロセスモデルを保有。
- 試験高炉を所有し、開発技術の検証が可能。
- 世界最高水準の高級鋼一貫製造技術 を保有。今回開発技術によってグリーン スチールにおいても優位性を維持
- 鉄鋼プロセスにおいて世界最高のエネルギー効率

3. イノベーション推進体制

(経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、カーボン・ニュートラル推進会議を設置して本事業を推進

組織内の役割分担

研究開発責任者と担当部署

- 研究開発責任者
 - カーボンニュートラル推進PJリーダー:テーマ全体統括を担当 新たに、カーボンニュートラル推進会議及びカーボンニュートラル統括部長を 設置した。
- 担当チーム

環境・プロセス研究部:①テーマ推進を担当

鉄鋼材料研究部:② CN鋼材関連情報収集を担当

磁性・先進技術研究部:③他素材CN化動向情報収集を担当

部門間の連携方法

- 定例のプロジェクト推進会議(JRCM所内会議)にて情報交換
- その他適官状況に応じて打合せを実施

3. イノベーション推進体制/(2)マネジメントチェック項目① 経営者等の事業への関与

経営者等による本事業への関与の方針

経営者等による具体的な施策・活動方針

- 経営者のリーダーシップ
 - 理事会・評議員会での審議の下、当センター2022FY事業計画において、材料研究の推進を通じて、地球環境問題、資源・エネルギー問題の解決に寄与することを事業方針に定めており、カーボンニュートラル・スチールの実現に向けた技術開発等に今後とも積極的に参画することとした。今後とも、水素社会の実現、省エネルギー、CO2排出削減、カーボンニュートラル実現への貢献を目的に活動することを社内外に明確化した。
 - 当センターの2022FY事業方針については、理事会、評議員会にて審議の上、決定したものであり、その内容は、ホームページにて広く公開・発信しており、今後とも積極的に発信していくこととしている。また、今回のGI基金事業(製鉄)についてはプレスリリース等によりその重要性をメッセージとして発信している。
 - カーボンニュートラルに直結する事業の重要性については、経営層〜職員が 理解しているが、さらに、そのことを実現するためのガバナンスイノベーションやイ ノベーションマネジメントシステムの理解を推進し、非線形な試行錯誤を奨励 する組織制度・組織文化を醸成することに努めている。
- 事業のモニタリング・管理
 - 代表理事が常に第一線に立ち、定期的に事業進捗を把握するための仕組みを構築している。担当役員の時間の内、約50%程度を当該業務に充当している。
 - 代表理事が常に第一線に立ち、必要に応じ、事業の進め方・内容に対して 適切なタイミングで指示を出す等、直接の関与を行っている。
 - 事業の進捗を判断するにあたり、社内外の学識経験者から幅広い意見を取り入れるための推進会議を設置することとしている。

経営者等の評価・報酬への反映

• 毎年、当センターの理事会、評議員会にて本事業の進捗状況が審議され、 担当役員の活動について評価されることとなる。本事業を含む全体事業の状況に応じて担当役員の報酬に反映されることとなる。本事業の進捗状況や成果は、担当管理職等の評価に反映される。

事業の継続性確保の取組

• 当センターでは、水素社会の実現、省エネルギー、CO2排出削減への貢献を 大目標とする事業方針を策定しており、経営層が交代する場合も、これらの 社会ニーズへの貢献は最重要案件として着実な引継ぎが行われることとなる。

※ISO56002、IEC62853等の国際標準、経済産業省による「<u>ガバナンスイノベーション</u>」「<u>ガバナンスイノベーション</u>」 <u>Ver2</u>」「<u>日本企業における価値創造マネジメントに関する行動指針</u>」等が参考になる。

3. イノベーション推進体制/(3)マネジメントチェック項目② 経営戦略における事業の位置づけ

経営戦略の中核において「製鉄プロセスにおける水素活用」事業を位置づけ、広く情報発信

理事会・評議委員会等での議論

- カーボンニュートラルに向けた全社戦略
 - 当該分野の範囲を超えたカーボンニュートラルに向けた取組について、 毎年度の事業方針策定に反映させている。
 - また、カーボンニュートラルに向けたイノベーション推進体制整備のため、 既存の部門を超えた横割り組織である「カーボンニュートラル推進会 議」及び「カーボンニュートラル統括部長」を設置した。
- 事業戦略・事業計画の決議・変更
 - 当センターのステークホルダー(賛助会員)である鉄鋼企業や(一社)日本鉄鋼協会において策定している2050年カーボンニュートラルの実現に向けた事業計画に貢献することとしている。
 - 当センターの重要な意思決定の場である理事会、評議員会において、 本事業の研究開発計画・事業戦略・事業計画に組織を挙げて取り 組むことについて、審議・決定した。
 - 毎年の理事会、評議員会において、本事業の進捗状況を定期的に フォローし、事業環境の変化等に応じて見直しを行っている。
 - 本事業について、理事会、評議員会において決議された内容は組織 内の関連部署に広く周知している。
- 決議事項と研究開発計画の関係
 - 上記で決議された事業戦略・事業計画において、本研究開発計画が 不可欠な要素として、優先度高く位置づけられている。

ステークホルダーに対する公表・説明

- 情報開示の方法
 - 2022年度事業計画及び事業方針等において、事業戦略・事業計画の内容を明示的に位置づけている。
 - GI基金事業(製鉄)に採択され、本事業がスタートしたことをプレスリリースやホームページにおいて広く対外公表している。また、今後、研究開発の進捗に合わせ、事業成果を広報誌やホームページ等により、逐次、対外公表する予定である。
- ステークホルダーへの説明
 - 事業の将来の見通し・リスク等を当センターのステークホルダーに対して、 説明している。
 - 本事業の効果(社会的価値等)を、国民生活のメリットに重点を置いて、幅広く情報発信していくつもりである。現時点では、GI基金事業 (製鉄)に採択され、本事業がスタートしたことをプレスリリースやホームページにおいて広く対外公表している。

3. イノベーション推進体制/(4)マネジメントチェック項目③事業推進体制の確保

機動的に経営資源を投入し、着実に社会実装まで繋げられる組織体制を整備

経営資源の投入方針

- 実施体制の柔軟性の確保
 - 事業の進捗状況や事業環境の変化を踏まえ、必要に応じて、開発体制や手法等の見直し、追加的なリソース投入等を行う準備・体制(現場への権限委譲等)がある。まずは、部門横割り組織である「カーボンニュートラル統括部長」を設置した。
 - 社内や部門内の経営資源に拘らず、目標達成に必要であれば、躊躇 なく外部リソースを活用する用意がある。
 - これまでも高炉3社とは密接な関連を維持しており、各社のニーズに応じて当センターの実施内容、実施体制について柔軟に対応していくことなる。
- 人材・設備・資金の投入方針
 - 鉄鋼技術に深い知見を有する人材を、環境・プロセス研究部、鉄鋼材料研究部、非鉄材料研究部及び磁性・先進技術研究部から確保している。
 - 既存の会議スペース等をフルに活用している。
 - 国費負担以外で、主として助成事業のための必要分の自己資金を投 じる予定である。
 - 短期的な経営指標に左右されず、長期的に必要な資源投入を継続 する所存である。

専門部署の設置等

- 専門部署の設置
 - 機動的な意思決定を可能とする組織構造・権限設定を行っている。例えば、経営者直轄の専門部署である「カーボンニュートラル推進会議」及び「カーボンニュートラル統括部長」を設置した。
 - 常に事業環境の変化に合わせて、関連する産業構造や自社のビジネス モデルを不断に検証している。
- 若手人材の育成
 - 当該産業分野を中長期的に担う若手人材の育成は非常に重要な課題であり、これまで、実施してきている各種の研究開発プロジェクトにおいて、多くの大学の研究者との共同研究を推進してきている。
 - これまでの産学官連携の実績により、多くの大学や国立研究開発法人の研究者とのネットワークを有しており、学会や各種の機会を通じて、アカデミアの若手研究者との共同研究や情報交流を推進する予定である。

4. その他

4. その他/(1) 想定されるリスク要因と対処方針

リスクに対して十分な対策を講じるが、自然災害等の事態に陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- ⇒コンソーシアムメンバー会社で連携して対処する も解決策が見いだせない場合は開発を中止する。
- 開発技術を凌駕する新技術の出現
- ⇒将来のCNに対して社会実装までの期間やコスト 面において有効である場合は、中止も含めた検 討を行う。

社会実装(経済社会)におけるリスクと対応

- 安価でクリーンな水素の入手が困難となる
- ⇒開発は進めるが社会実装に関しては延期する。 なおコスト評価は継続して行い、社会実装の タイミングを見極める。
- 水素、電力価格が高く、かつグリーンスチールの評価 が低く鋼材生産の収益性が見込まれない
- ⇒商品の価値を適正に価格に反映し受け止めて もらえるよう国、お客様に働きかける。

その他(自然災害等)のリスクと対応

- 自然災害(地震、津波等)による設備破損等のリスク
 - ⇒近年の風水害による被害や行政の ハザードマップ等の最新の情報に基づい た、対策の見直しを実施する。
- COVID-19の再拡大等のパンデミックにより、 開発に大幅な遅れが生じる場合
 ⇒全体スケジュールの再調整も含め検討 する。

事業中止の判断基準:

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- 開発技術を凌駕する新技術が出現し、将来のCNに対して社会実装までの期間やコスト面において有効である場合
- 水素、電力、バイオマスの価格が高く、かつグリーンスチールの評価が低く鋼材生産の収益性が見込まれず事業継続できなくなった場合
- 大規模震災等の自然災害により、事業の継続が困難となった場合