事業戦略ビジョン

提案プロジェクト名:「製鉄プロセスにおける水素活用」プロジェクト

- 1. 高炉を用いた水素還元技術の開発
 - ② 外部水素や高炉排ガスに含まれるCO2を活用した低炭素技術等の開発

提案者名:日本製鉄株式会社、代表名:代表取締役社長 橋本 英二

(共同提案者:JFEスチール株式会社、株式会社神戸製鋼所、

一般財団法人 金属系材料研究開発センター)

目次

- 0. コンソーシアム内における各主体の役割分担
- 1. 事業戦略・事業計画
 - (1) 産業構造変化に対する認識
 - (2) 市場のセグメント・ターゲット
 - (3) 提供価値・ビジネスモデル
 - (4) 経営資源・ポジショニング
 - (5) 事業計画の全体像
 - (6) 研究開発・設備投資・マーケティング計画
 - (7) 資金計画
- 2. 研究開発計画
 - (1) 研究開発目標
 - (2) 研究開発内容
 - (3) 実施スケジュール
 - (4) 研究開発体制
 - (5) 技術的優位性
- 3. イノベーション推進体制(経営のコミットメントを示すマネジメントシート)
 - (1) 組織内の事業推進体制
 - (2) マネジメントチェック項目① 経営者等の事業への関与
 - (3) マネジメントチェック項目② 経営戦略における事業の位置づけ
 - (4) マネジメントチェック項目③ 事業推進体制の確保
- 4. その他
 - (1) 想定されるリスク要因と対処方針

0. コンソーシアム内における各主体の役割分担

1.高炉を用いた水素還元技術の開発/②外部水素や高炉排ガスに含まれるCO2を活用した低炭素化技術等の開発

日本製鉄(幹事会社)

日本製鉄が実施する研究開発の内容

① S-COURSE50操業技術開発

- ③ 要素技術開発
- CO2分離回収技術
- バイオマス活用技術
- 廃プラ利用拡大技術
- ④ 全体プロセス評価

JFEスチール

JFEが実施する研究開発の内容

- ② カーボンリサイクル高炉操業技術開発
- ③ 要素技術開発

- 高炉一貫プロセスにおける冷鉄源活用技術
- ④ 全体プロセス評価

神戸製鋼所

神戸製鋼が実施する研究開発の内容

- ③ 要素技術開発
- 羽口内燃焼の適正化
- バイオマス活用技術
- ④ 全体プロセス評価

金属系材料研究開発センター (JRCM)

JRCMが実施する研究開発の内容

④ 全体プロセス評価

(提案プロジェクトの目的:製鉄プロセスからCO2排出50%以上削減を実現する技術の実現)

1. 事業戦略·事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識

2050年カーボンニュートラル実現のため、超革新的技術にチャレンジし、世界の鉄鋼業をリード

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

・鉄鋼業は、資源・エネルギー・土木・建築等のインフラ分野や、自動車、電機電子・造船等の製造業等のあらゆる産業の基盤の役割を果たしている。

(経済面)

- ・2050年のカーボンニュートラル社会においても、鉄鋼は、電動車向けの電磁鋼板や洋上 風力のモノパイル等にも利用されるなど、脱炭素化製品に必要不可欠な素材の一つである。
- ・IEAの見通しにおいても、2050年断面において、自動車や各インフラ、電子電気機器等で大きな需要が見込まれている。

(政策面)

- ・製鉄プロセスの脱炭素化に向けた技術開発は世界各国でも行われており、日本以外の多くの海外鉄鋼メーカーも2050年カーボンニュートラルを宣言し、脱炭素化に向けた世界的技術開発競争が進められている。
- ・我が国鉄鋼業の国際競争力を確保していくには、世界に先駆けて製鉄プロセスにおける 脱炭素化技術を開発し、「グリーンスチール」を実現することが不可欠となる。

(技術面)

- ・現行の高炉法は、エネルギー効率、生産効率、生産品質、原料条件の面で優れている一方で、コークス(石炭)を用いて還元する過程で不可避的にCO2が発生する。
- ・そのため、鉄鋼業におけるカーボンニュートラル実現のためには、原料や還元材において 化石燃料から脱却するという、製鉄プロセスそのものの抜本的な転換が求められている。

● 市場機会:

IEAは、製造工程のCO2排出量が実質ゼロである「グリーンスチール」の市場が、 2050年時点で約5億トンとの予測 (2070年にはほぼグリーンスチールに代替) 。 本市場を獲得するためには、日本鉄鋼業が水素還元製鉄等の超革新技術を世界に 先駆けて確立することが不可欠。

● 社会・顧客・国民等に与えるインパクト: 我が国鉄鋼業が、他国に先駆けてカーボンニュートラル製造プロセスを開発・実機化することにより、産業基盤として世界をリードし、グリーンスチール市場化をいち早く実現。

カーボンニュートラル社会における産業アーキテクチャ

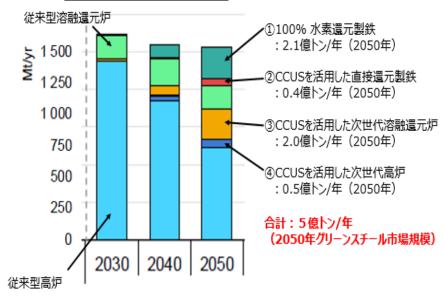
● 当該変化に対する経営ビジョン:

「日本製鉄カーボンニュートラルビジョン2050」 を掲げ、経営の最重要課題として、2050年カーボンニュートラルの実現にチャレンジ

〔2030年ターゲット〕 CO2総排出量▽30%の実現 〔2050年ビジョン〕 カーボンニュートラルを目指す

NIPPON STEEL

Green Transformation
initiative


1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット

世界に先駆けてグリーンスチールを開発し、日本鉄鋼業が技術的にけん引していくことが必要

セグメント分析

- ・IEAは、製造工程のCO2排出量が実質ゼロである「グリーンスチール」の市場が、2050年時点で約5億トンとの予測(2070年にはほぼグリーンスチールに代替)
- ・本市場を獲得するためには、**日本鉄鋼業が水素還元** 製鉄等の超革新技術を世界に先駆けて確立することが 不可欠

製造法別銑鉄生産量見通し

(出典) IEA Energy Technology Perspectives 2020

ターゲットの概要

- ・鉄鋼は、資源・エネルギー・土木・建築分野や、 自動車向けのハイテン・電磁鋼板(EV等のモーター で使用)・洋上風力の構造体等にも利用され、 カーボンニュートラル社会においても、 引き続き、必要不可欠な素材である
- ・IEAの見通しにおいても、2050年断面で、 自動車や電子電機機器、各インフラ等で 大きな需要が見込まれている

(出典) Iron and Steel Technology Roadmap (2020IEA)※ STEPS:公表済み政策シナリオ、SDS: 持続発展シナリオ

分野

分野動向 と 当社対応の方向性

自動車

2030年台半ば迄に乗用車新車販売を100%電動車化、2050年ライフサイクル 全体でのCO2排出ゼロ等の目標実現に向け、エコカーの生産量拡大が見込まれる。

→ハイテン材(車体の軽量化に寄与)、電磁鋼板の供給・性能向上により 省CO2に貢献

電子電機 機器

電化促進に向け、省エネを実現するデバイス・機器(高効率モーター、省エネ家電等) 関連での需要拡大が見込まれる。

→電磁鋼板(高効率モーターで使用)の供給・性能向上により省CO2に貢献

各インフラ

2050年のカーボンニュートラルに向けたグリーン成長戦略に基づき、今後、再生可能エネルギー(洋上風力発電等)、次世代燃料(水素等)等での急激な需要増が見込まれる。

→再生可能エネルギー分野での洋上風力の構造部材向け、次世代燃料分野での 製造-輸送-貯蔵-利用の広範囲に渡る需要に対し、高機能材を提供し貢献

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル

カーボンニュートラル製造プロセスの研究開発・実装により、鋼材市場のグリーンスチール化に対応

社会・顧客に対する提供価値

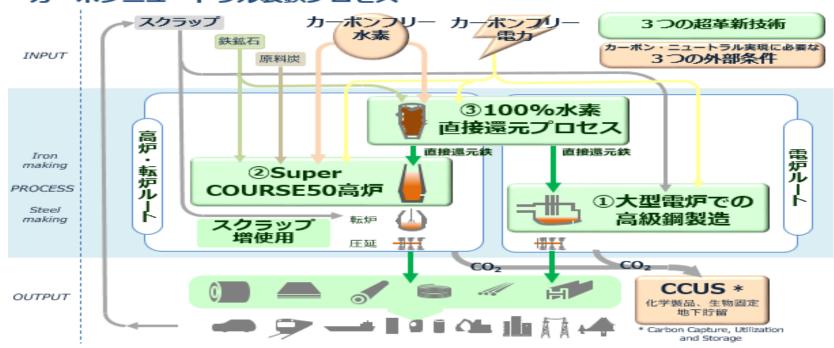
「3つのエコ」

① eco PROCESS 「事業活動の全段階における 環境負荷の低減」

事業活動全段階において、更なる環境 保全、資源・エネルギー効率の向上、 社内外の廃棄物削減とリサイクル促進を 目指し、環境負荷低減に向けた活動を 推進

② eco PRODUCTS 「環境配慮型製品の提供」

国内外に提供する製品のライフサイクル 全般において環境負荷を低減するために、 技術先進性を駆使して、環境保全・ 省資源・省エネルギーに資する製品を 開発・提供


③ eco SOLUTION 「地球全体を視野に入れた 環境保全への解決提案」

これまで培った環境保全・省資源・省エネルギーに資する技術や環境マネジメントシステム等をさらに向上させ、国内外に提案し、環境負荷の低減は、さらには技術移転を通じた海外の環境問題の解決に貢献

ビジネスモデルの概要と研究開発計画の関係性

- ・左記「3つのエコ」を継続する中で、カーボンニュートラル製鉄プロセスの研究開発・実装化を行うことにより 今後2050年に向け段階的に移行が進展すると想定される「グリーンスチール化」へ他国に先駆けて対応。
- ・広範な顧客の生産を維持する観点から、現有する**鉄鋼一貫製造プロセスでの生産を継続しつつ、** 新プロセス実装や関連設備改造等を全国の製造拠点にて順次実行。
- ・今回の新プロセス開発・実装に伴い、鉄鋼の一貫製造プロセス自体は大きく変わらないことから、 **既存の川上・川下システムは基本継続。**

カーボンニュートラル製鉄プロセス

コンソーシアムの強みを活かして、社会・顧客に対してグリーン鋼材という価値を提供

コンソーシアムの強み、弱み(経営資源)

ターゲットに対する提供価値(グリーン鋼材)

- 各国の自動車メーカーなどがサプライチェーンの カーボンニュートラル化を進めていくと宣言。
- 製造時のCO₂発生量を低減させたグリーン鋼材 の提供にかかわる要望が拡大
- エシカル消費を指向するカスタマーの満足度を向 上させ、新たな価値を提供する。

コンソーシアムの強み

- 低CO₂にかかわる技術蓄積
- 世界最高レベルの省エネ製鉄所運用
- COURSE50などの過去の低CO₂プロジェクトを実行 してきた経験
- 製鉄・製鋼にかかわる技術者が多く在籍
- コンビナートが周辺に立地した臨海製鉄所の保有 (化学・エネルギー等の業種が周辺に立地)

コンソーシアムの弱み及び対応

- 周囲に高品質鉱石生産地が少ない
- ケーン電力・水素の価格高・不足
- 水素インフラ脆弱性

•GI基金を活用した技術開発

・公的なインフラ基盤等の整備

コンソシーアム外の企業に対する比較優位性

(現状)

技術

- 過去の低CO₂プロジェクトへの 取り組み(COURSE50など)
- 世界最高レベルの省エネ製鉄 所運用

顧客基盤/サプライチェーン

- 需要家との密な連携体制
- 低価格豪州鉱石の使用

その他

- コンビナートに隣接した臨海製 鉄所用地の保有
- 製鉄・製鋼にかかわる技術者 が多く在籍

(将来に向けた取り組み)

- 国プロ(オールジャパン)技術開・需要家との関係強化、理 発への積極協力
 - 解活動(コスト負担等の議
 - 低品位・低価格豪州鉱サ プライヤーとの協力模索
- コンビナートの他業種(化) 学・エネルギー等)との連携
- 新規技術者の採用・育成 強化

欧州:域内で高品質鉱石が産出され、サプ ライチェーン的に有利。

⇒本プロジェクトを用いて特に豪州などで産出 される低品位鉱石に関する技術開発を加速

中国:日本と同様に低品位豪州鉱を使用、 宝武 (Bao)で 先進高炉の開発計画あり。 ⇒コンソーシアムとして先行している COURSE50などの過去知見を活用しながら 開発を実施。

10年間の研究開発の後、2030年頃の事業化、その後の投資回収を想定

投資計画

- ✓ 本事業終了後、2030年頃の事業化を目指す。
- ✓ カーボンニュートラル製造プロセスの研究開発・実装により、鋼材市場のグリーンスチール化に対応していく。

	2021年度	• • •	2030年度					
売上高	-	• • •	- [2030年以降の事業化、その後の投資回収を想定				
研究開発費	約4,363億F	円(本事業の支援期間の参画	「企業合計)	実機化設備費用で数兆円規模を想定				
取組の段階		研究開発·実証試	験	社会実装				
CO ₂ 削減効果	-	• • •	-	各社実装の進行に伴い 1,000万t/年規模で削減				

研究開発段階から将来の社会実装(設備投資・マーケティング)を見据えた計画を推進

研究開発·実証

設備投資

マーケティング

取組方針

- 国内高炉メーカーが協力してコンソーシアムを結成。各社の知見を総合的に活用。
- 現在の技術レベル・日本の地政学的な特色(豪州鉱山に近いこと)に鑑み、高炉/還元炉/電気炉のすべてに対して、複線的に開発を実施
- 開発課題を解決するために小規模実験 設備から大規模設備を順次建設
- 実験設備を各社で分担して建設
- 実験により得られた成果はコンソーシアム 内での情報交流を実施
- 実装設備に関しては、グリーン鋼材需要、 カーボンフリー水素/電力の調達状況、 各プロセスの経済合理性に鑑みながら 各社で建設を判断

- グリーン鋼材にかかわる国内ガイドラインの整備(国際標準化に向けて)
- 需要家に対するグリーン鋼材に関する 理解活動の実施
- 海外への積極的な発信、学会等での 積極的な広報活動の実施
- ライセンスビジネスによる技術の収益化 に関しても検討

国際競争 上の 優位性

- Course50プロジェクトの知見・設備を 活用。
- コンソーシアム内の協力体制により、開発期間・MP・費用を削減
- 各社に製鉄・製鋼にかかわる技術者が 多く在籍、学識経験者の知見も活用し た開発体制が構築可能

- コンソーシアム内での情報共有により、実 装化可否判断を効率的に実施
- 既存製鉄所インフラの一部活用

- 長期間にわたり醸成された需要家との 信頼関係
- 鉄鋼関連の標準 (ISO14030-3) などの作成過程において、議論をリード してきた実績

国の支援に加えて、本事業期間において参画企業で約2,428億円の自己負担を予定

【本事業に係る事業費および負担額(参画企業合計)】

	2021 年度	2022 年度	2023 年度	2024 年度	2025 年度	2026 年度	2027 年度	2028 年度	2029 年度	2030 年度	
事業全体の資金需要		本事業期間の 開発完了の後、 自己負担にて、									
うち研究開発投資											
国費負担 ^{※1} (委託/補助)		次ステップの試験 操業を実施する 予定									
自己負担	約2,428億円+実用化費用										. —

※1:インセンティブ額が全額支払われた場合

※2:早期実用化が可能となった場合は資金需要および自己負担分はさらに増額される

2. 研究開発計画

2. 研究開発計画/(1) 研究開発目標

「製鉄プロセスからCO₂排出50%以上削減を実現する技術を実証」というアウトプット目標を達成するために必要な複数のKPIを設定

研究開発項目

- 1.高炉を用いた水素還元技術の開発
- ②外部水素や高炉排ガスに含まれるCO₂を活用した低炭素化技術等の開発

アウトプット目標

現在の TRL: 4 *

製鉄プロセスからCO2排出50%以上削減を実現する技術を実証

研究開発内容

- 1 SG-1 S-COURSE50 操業技術開発
- 2 SG-2 カーボンリサイクル 高炉操業技術開発
- 3 SG-3 要素技術開発
 - 羽口内燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - 廃プラ利用拡大技術 等

4 SG-4 全体プロセス評価・検討

KPI

- ・アウトプット目標に寄与するCOっ削減
- ・アウトプット目標に寄与するCO2削減

- 材料耐熱温度以下の羽口表面温度
- ・分離回収コストのさらなる低減
- ・廃棄物系炭化物・木質系炭化物による PC置換
- ・脱塩素化・プラ処理量増
- ・製鉄所全体の物質・エネルギー収支モデルにより CO_2 削減50%以上の効果を評価

- KPI設定の考え方
- ・還元材の水素系ガスへの代替によるC消費量削減
- ・送風顯熱増加による熱補償
- ・高炉ガスのカーボンリサイクルによるCO。排出削減
- ・酸素高炉化によるカーボンリサイクル率アップ
- ・羽口内の安定燃焼の継続
- ・分離回収エネルギー低減によるランニングコスト削減
- ・製鉄用炭材として必要な発熱量確保/微粉炭代替 として必要な置換率確保
- ・減容化/異物処理や脱塩素によるプラ処理量拡大
- ※SG3の技術組合せでCO2削減目標を補完
- ・1-①とも一貫し、同一基準でCO₂削減技術を評価 ※SG1-3の組合せでCO₂削減50%以上の技術を実証
- *: 経済産業省製造産業局:「製鉄プロセスにおける水素活用」プロジェクトに関する研究開発・社会実装計画 令和3年9月14日 より

2. 研究開発計画/(2) 研究開発内容

各KPIの目標達成に必要な解決方法を提案

- 1 SG-1 S-COURSE50 操業技術開発
- 2 SG-2 カーボンリサイクル 高炉操業技術開発
- 3 SG-3 要素技術開発
 - 羽口内燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - 廃プラ利用拡大技術
- ◆ SG-4 全体プロセス評価・検討

- **KPI**
- ·CO₂削減

·CO₂削減

- •羽口表面温度
- ・分離回収コスト
- ·PC置換
- ・脱塩素化率・廃プラ処理量
- 各技術のエネルギー収支,CO₂ 削減評価

- 還元材の水素系ガスへの代替
- 送風顕熱増加による熱補償
- 高炉ガスのCリサイクルによるCO₂排出削減
- 酸素高炉化によるCリサイクル率アップ

- 材料、構造の適正化
- ベンチ試験による液組成や運転条件最適化 独自のCO₂吸収・放散促進触媒活用
- 廃棄物の選定およびアッシュ分離技術の確立 高炉羽口吹き込み技術の確立
- 効率的な処理プロセス(昇温/混錬方法/異物混入対策等)とスケールアップの検討
- モデルー貫製鉄所物質・エネルギー収支モデルの構築

(参考)研究開発内容1-②

1. 高炉を用いた水素還元技術の開発 ②外部水素や高炉排ガスに含まれるCOっを活用した低炭素化技術等の開発

事業の目的・概要

2030年までに、中規模試験高炉(500m3級以上)において、外部水素や高炉排ガスに含まれるCOっを活用した低炭素技術の開 発に加え、バイオマスや還元鉄などを一部原料として活用するなど、あらゆる低炭素化技術を組み合わせることにより、高炉法において 製鉄プロセスからCO₂排出を50%以上削減を実現する技術を実証。

- 要素技術開発および小規模試験高炉(水素直接吹込み:12m³、カーボンリサイクル高炉:150m³規模)での検証試験
- 中規模試験高炉(500m³級以上)での実証実験

※太字:幹事企業

実施体制

日本製鉄株式会社、JFEスチール株式会社、株式会社神戸製鋼所、 一般財団法人金属系材料研究開発センター

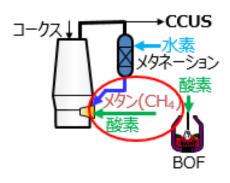
事業期間

2021年度~2030年度(10年間)

事業規模等

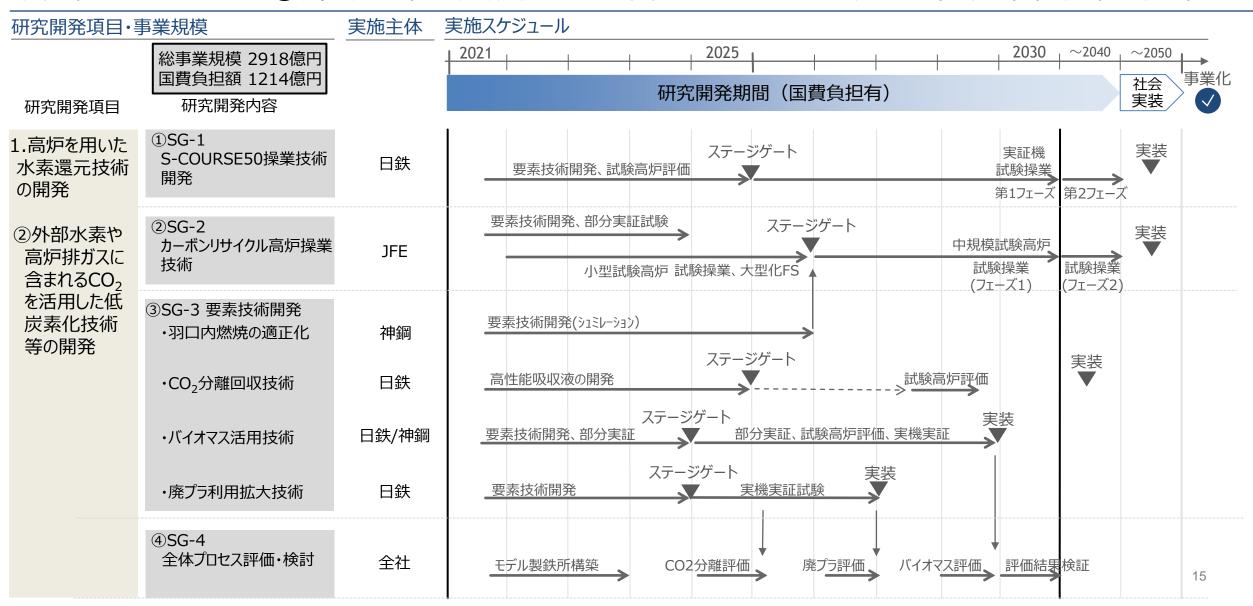
事業規模(①+②) : 約2918億円 支援規模(①+②)*:約1214億円

*インセンティブ額を含む。今後ステージゲートで事業進捗などに応じて変更の 可能性あり

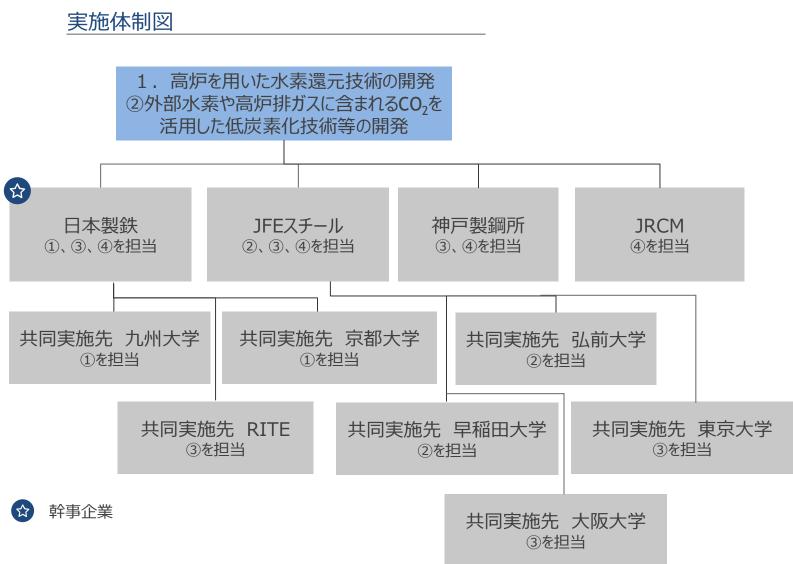

補助率など: ①委託 → ②2/3補助 (インセンティブ率は10%)

事業イメージ

従来型高炉技術



技術②(水素間接吹き込み) ※メタネーション


2. 研究開発計画/(3) 実施スケジュール

研究開発項目:1-②外部水素や高炉排ガスに含まれるCO2を活用した低炭素化技術等の開発

2. 研究開発計画/(4) 研究開発体制

各主体の特長を生かせる研究開発実施体制と役割分担を構築

各主体の役割と連携方法

各主体の役割

- 研究開発項目全体の取りまとめは、日本製鉄が行う
- 日本製鉄は、①S-COURSE50操業技術開発と③要素技術開発、 ④全体プロセス評価・検討を担当する
- JFEスチールは、②カーボンリサイクル高炉操業技術開発と③要素技術開発、④全体プロセス評価・検討を担当する
- 神戸製鋼所は、③要素技術開発、④全体プロセス評価・検討を 担当する
- JRCMは、④全体プロセス評価・検討を担当する
- 九州大学は、①S-COURSE50操業技術開発を担当する
- 京都大学は、①S-COURSE50操業技術開発を担当する
- RITEは、③要素技術開発を担当する
- 早稲田大学は、②カーボンリサイクル高炉操業技術開発を担当する
- 弘前大学は、②カーボンリサイクル高炉操業技術開発を担当する
- 東京大学は、③要素技術開発を担当する
- 大阪大学は、③要素技術開発を担当する

研究開発における連携方法

- 定例打合せの実施
 - 製鉄プロセスにおける水素活用プロジェクト4テーマで定期的な連携会議を実施し、製鉄業における一貫した整理と総合評価を実施

2. 研究開発計画/(5)技術的優位性

国際的な競争の中においても技術等における優位性を保有

研究開発項目

- 1. 高炉を用いた 水素還元技術 の開発
- ②外部水素や高 炉排ガスに含ま れるCO₂を活用 した 低炭素化 技術等の開発

研究開発内容

- ¹ SG-1 S-COURSE50操業 技術開発
- 2 SG-2 カーボンリサイクル高炉 操業技術開発
- 3 SG-3 要素技術開発
 - 羽口燃焼適正化
 - CO₂分離回収技術
 - バイオマス活用技術
 - 廃プラ利用拡大技術

活用可能な技術等

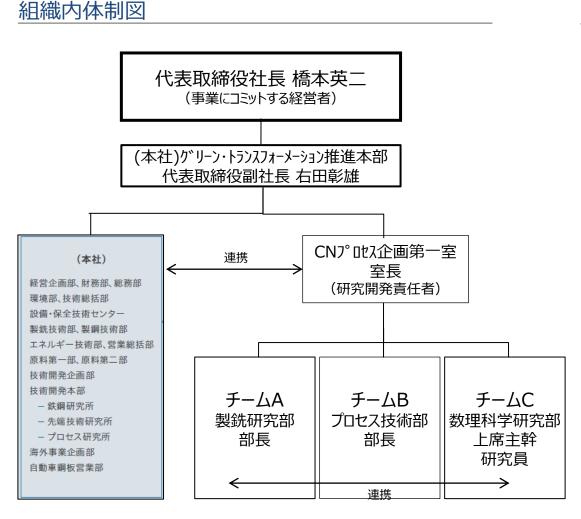
- 高炉シミュレーションモデル
- 高温水素ガスの吹込み技術
- 酸素高炉の操業技術
- 高炉への都市ガス吹込み技術

- 高炉PCI操業技術
- 混合溶媒系吸収液開発技術 CO₂吸収·放散促進触媒技術
- 高炉PCI操業技術
- 既存廃プラ処理設備
- ◆SG-4全体プロセス評価・検討
- 製鉄所物質・エネルギー収支データ およびモデル

競合他社に対する優位性

優位性

- 高炉内現象を高精度で評価しうる高炉 総合プロセスモデルを保有。
- 試験高炉を所有し、開発技術の検証が 可能。
- 世界最高水準の高級鋼ー貫製造技術 を保有。今回開発技術によってグリーン スチールにおいても優位性を維持
- 鉄鋼プロセスにおいて世界最高のエネルギー効率


3. イノベーション推進体制

(経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、専門部署に複数チームを設置

1.高炉を用いた水素還元技術の開発/②外部水素や高炉排ガスに含まれるCO2を活用した低炭素化技術等の開発

組織内の役割分担

研究開発責任者と担当部署

- 研究開発責任者
 - CNプロセス企画第一室 室長
- 担当チーム
 - チームA: S-COURSE50操業技術開発を担当
 - チームB:バイオマス活用技術開発、コークス炉での廃プラ活用技術を担当
 - チームC:化学吸収法によるCO2分離回収技術を担当
- チームリーダー
 - チームA:製銑研究部 部長 S-COURSE50操業技術開発の実績
 - チームB:プロセス技術部 部長 バイオマス・廃プラ活用技術の実績
 - チームC:数理科学研究部 上席主幹研究員

化学吸収法によるCO2分離回収技術の実績

部門間の連携方法

- 2021.4に「CNビジョン2050」を推進するための専任組織(約70名体制)を設置
- 社内関係役員が全て出席する「グリーン・トランスフォーメーション推進委員会」を 四半期に一度程度開催し、推進本部全体の進捗を管理

3. イノベーション推進体制/(2)マネジメントチェック項目① 経営者等の事業への関与

経営者による環境基本方針、カーボンニュートラルへの関与の方針

経営者等による具体的な施策・活動方針

• 経営者のリーダーシップ

- 環境基本方針
 - ・日本製鉄「環境基本方針」を制定し、HPやサステナビリティ・レポート等において 社内外に開示。

『当社は「環境経営」を基軸とし、環境への負荷の少ない環境保全型社会の構築に貢献します。このため、良好な生活環境の維持向上や廃棄物削減・リサイクルの推進など地域における環境保全の視点を踏まえた事業活動を行うとともに、地球温暖化問題への対応や生物多様性の維持・改善など、地球規模の課題にも取り組みます。』

- **日本製鉄カーボンニュートラルビジョン2050**(以下、CNビジョン2050)
 - ・2021.3に「CNビジョン2050」を制定し社内外に公表。
 - ・2030にCO2総排出量を2013比30%削減するターゲットと、2050にカーボンニュートラルを目指すシナリオを提示。
 - ・ビジョン達成のために、当社として超革新的技術開発に取り組むことと、社会との3つの連携が必要であることを、社内外に発信。
 - ・サステナビリティレポートーにおいてもCNビジョンをKPIとして設定。

- グリーントランスフォーメーション推進本部 (社内組織)

- ・2021.4に「CNビジョン2050」を推進するための専任組織(約70名体制)を設置。
- ·本部長:環境担当副社長

副本部長:環境担当常務、技術総括担当常務 を組織の長として、経営のリーダーシップの下、プロジェクトを強力に推進。

- 事業のモニタリング・管理
 - 取締役会・経営会議
 - ・下記、「環境経営委員会」「グリーン・トランスフォーメーション委員会」の内容について、取締役会・経営会議へ報告することとしており、社外取締役も含めた、 社内外からの幅広いモニタリングを実施。

- 委員会による半期サイクルのモニタリング・管理

・環境担当副社長を委員長とし、関係役員・部長が出席する、「環境経営委員会」、「グリーン・トランスフォーメーション委員会」を各々年2回以上開催し、「環境基本方針」「CNビジョン」の課題進捗について確認。

3. イノベーション推進体制/(3)マネジメントチェック項目② 経営戦略における事業の位置づけ

経営戦略の中核においてゼロカーボンスチールの実現を位置づけ、広く情報発信

取締役会等での議論

• カーボンニュートラルに向けた全社戦略

- グリーン・トランスフォーメーション推進委員会において、戦略立案および進捗 管理を実行中。
- 「日本製鉄カーボンニュートラルビジョン2050」を策定し、2021.3に公表 (以下、「CNビジョン」と表記)。

経営の最重要課題として2050カーボンニュートラルの実現に取り組むこと、 および3つの超革新技術とCCUS等による2050にカーボンニュートラルを実 現するシナリオを提示した上で、各々の技術課題や3つの社会的連携にも 言及。

- 「グリーン・トランスフォーメーション推進本部」: 2021.4に「CNビジョン 2050」を推進するための専任組織(約70名体制)を設置。

事業戦略・事業計画の決議・変更

- 「CNビジョン」を中長期経営計画の柱の一つに位置付け、経営会議・取締役会に付議。
- 「CNビジョン」に関する課題進捗については、関係副社長以下が出席する グリーン・トランスフォーメーション推進委員会を定期的に開催し(年2回以 上)、進捗をフォローするとともに、同内容を取締役会・経営会議等に報告。
- 「CNビジョン」に関する進捗については、適宜プロジェクト推進に必要な社内 関連部門へ共有を実施。

決議事項と研究開発計画の関係

- 「CNビジョン」の中で、3つの超革新技術実現のための研究開発が 必須であることを明確に位置付け。
- 研究開発計画を最重要課題としてフォロー実施。

ステークホルダーに対する公表・説明

情報開示の方法

- 中期計画や決算発表等の I R 資料、統合報告書、サステナビィリティー・レポート、H P 等において、TCFD等のフレームワークも活用し、事業戦略・事業計画の内容を積極的に開示。
- ESG説明会、CNビジョン説明会、機関投資家・マスコミを対象にした説明会等を実施。

ステークホルダーへの説明

- 事業の将来の見通し・リスクに関し、中長期事業計画や決算に関する発表 内容を、以下のステークホルダーとの各種接点を通じて情報提供。
- ◆ 金融機関・投資家との各種エンゲージメントの機会等
- ◆ 需要家からのサプライチェーン全体のCO2削減に関する問合せ等
- ◆ 株主総会、エコプロダクツ展、工場見学会等
- ◆ 政府、関係省庁、行政等
- 「CNビジョン」の内容について、各所媒体を通じて広く周知活動を実施。新聞・TV等に加え、ネット媒体等での周知についても拡大し、当社チャレンジの社会価値について広く情報発信を行っている。

「ディスクロージャー優良企業 | 2 年連続 1 位

- 日本証券アナリスト協会の2021年度「ディスクロージャー優良企業選定」で、鉄鋼・非鉄金属部門の1位に2年連続で選定(経営陣のIR姿勢などの項目で最も高い評価を得たほか、中長期計画や「CNビジョン」の公表など非財務情報の開示も評価された(鉄鋼新聞))

3. イノベーション推進体制/(4)マネジメントチェック項目③事業推進体制の確保

機動的に経営資源を投入し、着実に社会実装まで繋げられる組織体制を整備

経営資源の投入方針

- 人材・設備・資金の投入方針
- 人材確保
- ・2021.4にプロジェクト実行のための副社長を本部長とする組織(約70名 体制)を設置済。
- ・今後もプロジェクトの推進状況に応じ、必要なメンバー補充を随時実行。
- 設備·土地
- ・基本的には当社敷地内で既存設備を最大限活用し開発・試験を実施。
- 研究開発のための必要資金
- ・2030年までに必要な研究開発費は5,000億円規模 (今回GI基金申請対象を含む)。
- ・2031~50年の設備実装のための必要投資額は4~5兆円規模が必要と 想定。
- ・これらは当社の「カーボンニュートラルビジョン2050」実行のために最低限 必要な投資であり、短期的な経営指標の如何に関わらず、機動的に 実行していく。

専門部署の設置

- 専門部署の設置
- グリーントランスフォーメーション推進本部の設置
 - •2021.4に「CNビジョン2050」を推進するための専任組織(約70名体制)を 設置。
- 若手人材の育成
- 若手人材への育成機会の提供
 - ・本プロジェクトはプロセス刷新というチャレンジングな開発であり、既存プロセス を原理原則に立ち返って深く理解し直した上で、新プロセス開発に取り組む ことが必要であり、若手人材の育成にとって非常に有用。
 - ・本研究・開発に当たっては、中堅・若手の研究者・技術者を配し、将来的な 鉄鋼製造プロセスの変革に向けた研究開発・実装化を経験することによる 育成機会を付与。
- 外部機関の活用
 - ・研究開発推進に当たっては、外部機関の活用にも常に門戸を開き、適任者 がいれば若手研究者等にも共同研究に適宜参画いただく。

4. その他

リスクに対して十分な対策を講じるが、自然災害等の事態に陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- ⇒コンソーシアムメンバー会社で連携して対処する も解決策が見いだせない場合は開発を中止する。
- 開発技術を凌駕する新技術の出現
- ⇒将来のCNに対して社会実装までの期間やコスト 面において有効である場合は、中止も含めた検 討を行う。

社会実装(経済社会)におけるリスクと対応

- 安価でクリーンな水素の入手が困難となる
- ⇒開発は進めるが社会実装に関しては延期する。 なおコスト評価は継続して行い、社会実装の タイミングを見極める。
- 水素、電力価格が高く、かつグリーンスチールの評価が低く鋼材生産の収益性が見込まれない
- ⇒商品の価値を適正に価格に反映し受け止めて もらえるよう国、お客様に働きかける。

その他(自然災害等)のリスクと対応

- 自然災害(地震、津波等)による設備破損等のリスク
 - ⇒近年の風水害による被害や行政の ハザードマップ等の最新の情報に基づい た、対策の見直しを実施する。
- COVID-19の再拡大等のパンデミックにより、 開発に大幅な遅れが生じる場合
 ⇒全体スケジュールの再調整も含め検討 する。

事業中止の判断基準:

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- 開発技術を凌駕する新技術が出現し、将来のCNに対して社会実装までの期間やコスト面において有効である場合
- 水素、電力、バイオマスの価格が高く、かつグリーンスチールの評価が低く鋼材生産の収益性が見込まれず事業継続できなくなった場合
- 大規模震災等の自然災害により、事業の継続が困難となった場合