事業戦略ビジョン

実施プロジェクト名:「製鉄プロセスにおける水素活用」プロジェクト

2.水素だけで低品位の鉄鉱石を還元する直接水素還元技術の開発

①直接水素還元技術の開発

実施者名:JFEスチール株式会社、代表名:代表取締役社長 北野嘉久 (コンソーシアム内実施者:日本製鉄株式会社(幹事企業)、 一般財団法人 金属系材料研究開発センター)

目次

- 0. コンソーシアム内における各主体の役割分担
- 1. 事業戦略・事業計画
 - (1) 産業構造変化に対する認識
 - (2) 市場のセグメント・ターゲット
 - (3) 提供価値・ビジネスモデル
 - (4) 経営資源・ポジショニング
 - (5) 事業計画の全体像
 - (6) 研究開発・設備投資・マーケティング計画
 - (7) 資金計画
- 2. 研究開発計画
 - (1) 研究開発目標
 - (2) 研究開発内容
 - (3) 実施スケジュール
 - (4) 研究開発体制
 - (5) 技術的優位性
- 3. イノベーション推進体制(経営のコミットメントを示すマネジメントシート)
 - (1) 組織内の事業推進体制
 - (2) マネジメントチェック項目① 経営者等の事業への関与
 - (3) マネジメントチェック項目② 経営戦略における事業の位置づけ
 - (4) マネジメントチェック項目③ 事業推進体制の確保
- 4. その他
 - (1) 想定されるリスク要因と対処方針

0. コンソーシアム内における各主体の役割分担

2. 水素だけで低品位の鉄鉱石を還元する直接水素還元技術の開発/ ① 直接水素還元技術の開発

日本製鉄(幹事会社)

日本製鉄が実施する研究開発の内容

- A. 低品位原料の利用技術
- B-1. 還元ガスの水素化技術 (100%水素還元)
- C. プロセス検証
- D. スケールアップ検証
- E. 全体プロセス評価

JFEスチール

JFEスチールが実施する研究開発の内容

A. 低品位原料の利用技術

- B-2. 還元ガスの水素化技術 (カーボンリサイクル)
- C. プロセス検証
- D. スケールアップ検証
- E. 全体プロセス評価

金属系材料研究開発センター (JRCM)

JRCMが実施する研究開発の内容

E. 全体プロセス評価

提案プロジェクトの目的: CO₂排出を50%以上削減する水素直接還元技術の確立

1. 事業戦略·事業計画

1. 事業戦略・事業計画/(1)産業構造変化に対する認識

メーカーおよび消費者等の変化によりグリーン鋼材※市場が急拡大すると予想

カーボンニュートラルを踏まえたマクロトレンド認識

(社会面)

• 近年頻発する異常気象等を背景に、国内外で気候変動への 危機感が高まり、地球環境問題はグローバルリスクとしての 位置づけが極めて大きなものとなっている。

(経済面)

- CN目標を実現するためのエネルギー投資が拡大し、日本の実質GDP水準は今後30年にわたり1.2%ほど押し上げられる。
- CO2削減のための限界費用が増加し、企業の関連投資の拡大を阻害する可能性がある。

(政策面)

• 主要各国は、2050年カーボンニュートラルを宣言し、成長機会としての脱炭素化に向けて大規模な経済対策を実施。

(技術面)

- 水素,アンモニア等への燃料転換に向けての開発加速
- CO2リサイクル, 固体化, CCS技術の進展

● 市場機会:

CO2削減に貢献する高付加価値鋼材(エコプロダクト)マスバランス方式を活用した鉄鋼製品(グリーンスチール)などがマーケットへ投入されている。

● 社会・顧客・国民等に与えるインパクト: 材料調達を含むサプライチェーン全体と製造工程でのCO2 削減に寄与。

カーボンニュートラル社会における産業アーキテクチャ

グリーン社会への転換

LCA的観点でCO2排出しない・させい ない消費が当たり前の時代

∞ エシカル消費とは

持続可能な開発目標 (SDGs) の 12番目は「つくる責任 つかう責任」 2015年9月の回道総会で決められた国際的な17の目標のなかにも、貧困や影響、 マニルニー、名句を施・平和的社会なども作せて、「発展可能な生産・消費形態の確保

(出典)令和2年8月消費者庁: エシカル消費に関する意識調査など

メルセデスベンツは2039年にCNなサ プライヤーチェーンと達成すると言及

社会の要求

低炭素エネルギー 低炭素化素材 ニーズの高まり

構造材として鉄を 代替するものはない グリーン鋼材

- 当該変化に対する経営ビジョン:
- 気候変動問題は事業継続の観点から極めて重要な経営課題と捉え,
- ✓ 気候変動問題の解決に向け、新技術の研究開発を加速し、 超革新的技術に挑戦
- ✓ 持続可能な社会の実現に貢献する事業機会の拡大を推進し, 社会全体のCO2削減に貢献することで企業価値の向上を図る

1. 事業戦略・事業計画/(2) 市場のセグメント・ターゲット

産業用素材のうちグリーン鋼材製造をターゲットとして想定

セグメント分析(自動車におけるグリーン材料調達を例示) グリーン自動車素材 低負荷 再生可能素材 製造時CO2を発 •木材 生させない素材 バイオプラス - グリーン鋼材 チック (ハイテンなど) • グリーンアルミ 低CO2負荷 素材への転換 現行自動車素材 ・プラスチック 鋼材(ハイテンなど) ・ゴム 高負荷 ・アルミなど ・ガラス 外装材 構诰材

ターゲットの概要

2050年の鉄鋼生産量は27億トン/年となると予想されているがスクラップですべてをすべての需要を賄うことができず14億トン/年の還元鉄を生産する必要がある。2050年のカーボンニュートラルを目指して、溶銑・還元鉄製造時のCO2削減にかかわる技術開発が必要

▼ 需要家の要求

- サプライチェーンのカーボンニュートラル化を進めていくと宣言するメーカーが出現
- 日本国内においても、排出削減目標を提示する動きがある

需要家主なプレーヤー 消費量 (現在)自動車メルセデス
ベンツ自動車鋼材市場
国内 800万t/年
欧州 1600万t/年
※自動車1台当たり0.8t
の鋼材を使用と仮定

課題

- ・メルセデスベンツはサプライチェーンにかかわる**75**%の 企業と**2039**年までにカーボンニュートラルな製品を 提供する契約を交わした
- 欧州 1600万t/年
※自動車1台当たり0.8t
の鋼材を使用と仮定・ 直接取引する世界の主要部品メーカーに対し、
2021年の二酸化炭素(CO2)排出量を前年
比3%減らすよう求めた。
 - ・2050年にカーボンニュートラル達成を宣言

サプライヤーの対応

- SSABは2021年7月グリーン鋼材を製造したと発表。再エネ由来の水素を用いて還元するプラントにおいてグリーン鋼材を生産。試験プラントで生産された鋼材を、ボルボ社やメルセデスベンツ社などの自動車メーカー等に供給開始。
- 国内高炉3社は「マスバランス方式」により特定の鋼材に割り当てた低CO2鋼材(グリーンスチール)の販売した。

1. 事業戦略・事業計画/(3) 提供価値・ビジネスモデル

カーボンリサイクル技術を用いてグリーンな鋼材を提供する事業を創出/拡大

社会・顧客に対する提供価値

※エシカル消費とは環境や人権に対して十分 配慮された商品やサービスを選択・購入すること

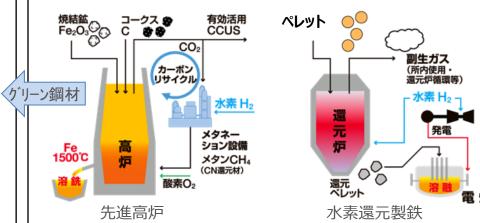
- ◎エシカル消費※にかかわる消費者意識向上
- ・自然災害や環境破壊・資源の枯渇等の問題はですべ ての人が可能な範囲で行動するべき ⇒57.1%
- ・エシカル商品の提供が企業イメージ向上につながる ⇒79.6%
- ・エシカル商品・サービスの購入時の価格アップを容認 ⇒69.0%

(令和2年8月消費者庁:エシカル消費に関する意識調査より)

◎環境配慮型商品による新しい価値を創造 鉄鋼分野においても、グリーン鋼材に付加価値を含めた 価格設定が行われる動きがある

価格が高くても、環境配慮型商品を購入す ることで、世界が抱えている問題を解決に導く 一端を担っていることを実感できる

顧客満足度の向上


ビジネスモデルの概要 (製品、サービス、価値提供・収益化の方法)と研究開発計画の関係性

白動車メーカー

アジアの大消費地への供 給を担うためには大量の 高品質鋼材が必要 ⇒鋼材供給能力重要な ファクター

鉄鋼メーカー(グリーン鋼材製造プロセス)

低品位鉱石を使用しながら大量生産が可能で、カーボンニュートラル 実現可能な製鉄プロセスを実現→複線的な開発によりを実施

ヨーロッパ製鉄各社とのビジネスモデル差異

・ヨーロッパ各製鉄会社(例SSAB,アルセロールミタル、 ティッセンなど)が天然ガスベースのシャフト炉還元を ベースに水素還元へ変換していくことを指向している。

- ・日本国は①低品位豪州鉱石を主な原料としている、 ②天然ガス、水素を輸入に頼ることとなるなどの理由 から、価格競争力のある先進高炉開発なども推進
- ・低品位鉱石の利用が可能になれば、国内各メー カーの鋼材価格競争力を強化することができ、幅広い ユーザに対して、大量の良質鋼材供給が可能になる。

原料・還元材サプライヤー

日本において主な鉱石 供給国は豪州である。 豪州鉱石は原料中に含 まれる不純物(スラグ 分)が多い反面、大量・ 安価に入手が可能であ る。

グリーン水素

1. 事業戦略・事業計画/(4)経営資源・ポジショニング

コンソーシアムの強みを活かして、社会・顧客に対してグリーン鋼材という価値を提供

コンソーシアムの強み、弱み(経営資源)

ターゲットに対する提供価値 (グリーン鋼材)

- 各国の自動車メーカーなどがサプライチェーンの カーボンニュートラル化を進めていくと宣言。
- 製造時のCO₂発生量を低減させたグリーン鋼材の提供にかかわる要望が拡大
- エシカル消費を指向するカスタマーの満足度を向上させ、新たな価値を提供する。

コンソーシアムの強み

- 低CO₂にかかわる技術蓄積
- 世界最高レベルの省エネ製鉄所運用
- COURSE50などの過去の低CO₂プロジェクトを実行してきた経験
- 製銑・製鋼にかかわる技術者が多く在籍
- コンビナートが周辺に立地した臨海製鉄所の保有 (化学・エネルギー等の業種が周辺に立地)

コンソーシアムの弱み及び対応

- 周囲に高品質鉱石生産地が少ない
- ケリーン電力・水素の価格高・不足
- 水素インフラ脆弱性

・GI基金を活用した技術開発

・公的なインフラ基盤等の整備

コンソシーアム外の企業に対する比較優位性

(現状)

技術

- 過去の低CO₂プロジェクトへの 取り組み(COURSE50など)
- 世界最高レベルの省エネ製鉄 所運用

顧客基盤/サプライチェーン

- 需要家との密な連携体制
- 低価格豪州鉱石の使用

その他

- コンビナートに隣接した臨海製鉄所用地の保有
- 製銑・製鋼にかかわる技術者が多く在籍

(将来に向けた取り組み)

- 国プロ(オールジャパン)技術開・ 発への積極協力
- 需要家との関係強化、理 解活動(コスト負担等の議 論)
 - 低品位・低価格豪州鉱サプライヤーとの協力模索
- コンビナートの他業種(化学・エネルギー等)との連携 模索
- 新規技術者の採用・育成 強化

欧州:域内で高品質鉱石が産出され、サプライチェーン的に有利。

⇒本プロジェクトを用いて特に豪州などで産出 される低品位鉱石に関する技術開発を加速 中国:日本と同様に低品位豪州鉱を使用、 宝武 (Bao)で 革新高炉の開発実施中。

COURSE50などの過去知見を活用しながら開発を実施。

1. 事業戦略・事業計画/(5) 事業計画の全体像

10年間の研究開発の後、2030年頃の事業化、その後の投資回収を想定

投資計画

- ✓ 本事業終了後、2030年頃の事業化を目指す。
- ✓ カーボンニュートラル製造プロセスの研究開発・実装により、鋼材市場のグリーンスチール化に対応していく。

	2021年度	• • •	2030年度					
売上高	-	• • •	- [2030年以降の事業化、その後の投資回収を想定				
研究開発費	約4,363億F	9 (本事業の支援期間の参画	ā企業合計)	実機化設備費用で数兆円規模を想定				
取組の段階		研究開発·実証試	験	社会実装				
CO ₂ 削減効果	-	•••	-	各社実装の進行に伴い 1,000万t/年規模で削減				

1. 事業戦略・事業計画/ (6) 研究開発・設備投資・マーケティング計画

研究開発段階から将来の社会実装(設備投資・マーケティング)を見据えた計画を推進

研究開発•実証

国内高炉メーカーが協力してコンソーシア ムを結成。各社の知見を総合的に活用。

• 現在の技術レベル・日本の地政学的な 特色(豪州鉱山に近いこと)に鑑み、高 炉/還元炉/電気炉のすべてに対して、複 線的に開発を実施

設備投資

開発課題を解決するために小規模実験 設備から大規模設備を順次建設

- 実験設備を各社で分担して建設
- 実験により得られた成果はコンソーシアム 内での情報交流を実施
- 実装設備に関しては、グリーン鋼材需要、 カーボンフリー水素/電力の調達状況、 各プロセスの経済合理性に鑑みながら 各社で建設を判断

マーケティング

- グリーン鋼材にかかわる国内ガイドライ ンの整備(国際標準化に向けて)
- 需要家に対するグリーン鋼材に関する 理解活動の実施
- 海外への積極的な発信、学会等での 積極的な広報活動の実施
- ライセンスビジネスによる技術の収益化 に関しても検討

国際競争 上の 優位性

取組方針

- COURSE50プロジェクトの知見・設備を 活用。
- コンソーシアム内の協力体制により、開 発を加速
- 各社に製銑・製鋼にかかわる技術者が 多く在籍、学識経験者の知見も活用し た開発体制が構築可能

- コンソーシアム内での情報共有により、実 装化可否判断を効率的に実施
- 既存製鉄所インフラの一部活用

- 長期間にわたり醸成された需要家との 信頼関係
- 鉄鋼関連の標準(ISO14030-3) などの作成過程において、議論をリード してきた実績

1. 事業戦略・事業計画/(7)資金計画

国の支援に加えて、本事業期間において参画企業で約2,428億円の自己負担を予定

【本事業に係る事業費および負担額(参画企業合計)】

	2021 年度	2022 年度	2023 年度	2024 年度	2025 年度	2026 年度	2027 年度	2028 年度	2029 年度	2030 年度	
事業全体の資金需要	約4,363億円+実用化費用※2										
うち研究開発投資	約4,363億円						本事業期間の 開発完了の後、 自己負担にて、				
国費負担 ^{※1} (委託/補助)	約1,935億円						次ステップの試験 操業を実施する 予定				
自己負担	約2,428億円+実用化費用										

※1:インセンティブ額が全額支払われた場合

※2:早期実用化が可能となった場合は資金需要および自己負担分はさらに増額される

2. 研究開発計画

2. 研究開発計画/(1) 研究開発目標

「CO₂排出を50%以上削減する水素直接還元技術の確立」というアウトプット目標を達成するために必要な複数のKPIを設定

研究開発項目

シャフト炉における 水素直接還元技術

事業開始時 のTRL: 3 *

アウトプット目標

CO₂排出を50%以上削減する水素直接還元技術の確立

研究開発内容

- 原料一貫で水素直接還元技術の基礎検証
- 低品位原料の利用技術
- 還元ガスの水素化技術
- (B-1.水素還元/**B-2.カーボンリサイクル**)
- ◯ プロセス検証
 - ・小規模プラント試験(1t/h) (以下、試験シャフト炉)
- スケールアップ検証中型実証炉試験
- 全体プロセス評価・検討

KPI

- 直接還元向けの原料利用範囲拡大
- ・還元ガス水素化: CO₂削減≥50%(対高炉法)
- ・上記の目標を達成した中で 小規模プラント(1t/h)安定操業 (以下、試験シャフト炉)
- ・上記の目標を達成した中で中型実証炉の安定操業
- ・水素直接還元プロセスの技術・ 総合的合理性提示

KPI設定の考え方

- ・水素直接還元シャフト炉における原料品位・ 性状影響の基礎検討
- ・更なる資源自由度拡大に向けた基礎検討
- ・熱供給改善によるHっ還元効率化
- ・カーボンリサイクルによる還元ガス最適化
- ・還元粉化/クラスタリング抑制による安定操業

- ・中規模シャフト炉にて水素還元の実証
- ・電炉使用が可能な還元鉄品質の確保
- ・エネルギー評価などを通じた合理性評価
- ・高炉との比較、電炉との連携を含めた一貫整理

2. 研究開発計画/(2) 研究開発内容

各KPIの目標達成に必要な解決方法を提案

低品位原料を利用した水素直接 還元技術の基礎検証

- 低品位原料の利用技術
- 還元ガスの水素化技術 (水素還元/カーホンリサイクル)

KPI

- ·原料Fe品位
- ·CO₂削減

解決方法

- ・低品位原料の還元特性(還元粉化、金属化率) に応じた最適還元条件(温度,ガス成分)の見極め
- ・水素化のための熱補償、温度制御

- プロセス検証・小規模プラント試験(1t/h)
- •生產性
- •連続操業

- ・還元粉化/クラスタリング抑制 炉内ヒートパターン制御による粉化抑制

D スケールアップ検証・中型実証炉試験

- •生産性
- •金属化率

- ・炉内の昇温/還元遅れの抑制
- ・電炉使用が可能な還元鉄品質(金属化率、融点) の確保

■ 全体プロセス評価・検討

・プロセス合理性

- ・試験・検討を通じプロセス設定・条件の設計、最適化
- ・高炉操業等知見・ノウハウなど最大活用

2. 研究開発計画/(2) 研究開発内容(これまでの取組)

各KPIの目標達成に向けた個別の研究開発の進捗度

低品位原料を利用した水素直接 環元技術の基礎検証

- 🔼 低品位原料の利用技術
- B 還元ガスの水素化技術 B-1 水素還元 **B-2 カーホンリサイクル**

直近のマイルストーン

A 低品位鉱の特徴把握

B-1 固体・気体双方からの熱供給による水素ガス吹込み量の削減

B-2 還元炉での還元粉化や クラスタリング発生メカニズムの 基礎把握 これまでの(前回からの)開発進捗

- A ・低品位鉱の粒度別、鉱物種別の単体分離度を評価
- B-1・シャフト炉ベンチ試験機の機能強化完了。熱供給について、 ベンチ試験機と数学モデルにより、
 - -原料予熱による還元率向上、粉率低減効果を確認
 - -酸素燃焼による還元ガス量低減効果を享受可能と試算
 - ・クラスタリングの抑制技術の検討
- B-2・連続ベンチ実験炉の製作開始
 - ・還元炉とメタネーションの相互特性把握として、模擬炉頂ガス 基礎実験を実施し、メタンガスへの転化率を評価
 - ・還元粉化やクラスタリングに関する知見習得 (バッチ実験)
- ※A,Bそれぞれの共通サンプルで、各企業・大学間の開発を推進

こ プロセス検証

・小規模プラント試験(1t/h) (以下、試験シャフト炉) 試験シャフト炉の本体・付帯設備の設計

・試験シャフト炉の概念設計 (具備すべき装置の機能や本体及び付帯設備の仕様) および メーカー選定完了

・試験シャフト炉の本体及び付帯設備の基本設計を推進 (B-1成果を仕様に反映) △ (約6か月遅れ) 当初想定よりメーカーとの 契約合意に期間を要した ため

□ スケールアップ検証

·中型実証炉試験

■ 全体プロセス評価・検討

中規模直接還元炉の概念設計 及びメーカー選定

還元鉄への加炭技術及び課題 整理 >

* 2024年度より、本体および付帯設備の概念設計、 メーカー選定、仕様検討を実施検討開始予定

・シャフト炉及び電気炉での加炭技術の情報収集と得失整理 (2-②関係者とも関連技術に関する意見交換実施)

進捗度

○ 当初計画 通りに進行中

○ 当初計画 通りに進行中

2. 研究開発計画/(2) 研究開発内容(今後の取組)

個別の研究開発における技術課題と解決の見通し

低品位原料を利用した水素直接 環元技術の基礎検証

- ▲ 低品位原料の利用技術
- B 還元ガスの水素化技術 B-1 水素還元 **B-2 カーホンリサイクル**

直近のマイルストーン

A 各種粉砕機器の粉砕達成 粒度の解明および鉱物単体 分離度を向上する手法確立

B-1 還元粉化指数、クラスタリング指数を削減可能な条件の確立

B-2 還元炉の操業変動とメ タネーション反応の特性把握

残された技術課題

A 低品位原料の粉砕モード、および選鉱手法の選定

- B-1 ・熱供給手法の効果見極め

 - ・還元鉄の加炭、成型技術の確立
- B-2・新規ベンチ試験機を用いた還元炉の操業変動とメタネーション反応の広範囲な特性検証
 - ・還元粉化、クラスタリング抑制と還元率を両立するガス組成検討と高精度機器による組織観察評価
 - ・ガス組成と還元鉄脈石・加炭量の見極め、形状・成型最適化

解決の見通し

問題なし

- c プロセス検証
 - ・小規模プラント試験(1t/h) (以下、試験シャフト炉)

試験シャフト炉の仕様決定

- ・試験シャフト炉の詳細仕様決定 (23年度)
- ・試験シャフト炉 操業方案検討(24年度)

計画通り実施予定但し、事業面としては、半導体需要の逼迫による遅延懸念あり

- D スケールアップ検証
 - •中型実証炉試験
- € 全体プロセス評価・検討

中規模直接還元炉の概念設 計及びメーカー選定

他プロセスと比較可能な総合

評価手法の確立

- * 2024年度より、本体・付帯設備の概念設計、メーカー選定、 仕様検討を実施検討開始予定 (2023年度より数学モデルによる事前検討に着手)
- ・開発技術に対応し、他テーマとも比較評価可能なモデルの作製 バウンダリー設定、一貫評価手法の確立

今後検討 *水素サプライチェーン 構築が必須

計画通り実施予定

(参考) 研究開発内容2-①

2.水素だけで低品位の鉄鉱石を還元する直接水素還元技術の開発 ①直接水素還元技術の開発

事業の目的・概要

2030年までに、低品位の鉄鉱石を水素で直接還元する技術により、中規模直接還元炉(実炉の1/25~1/5規模)において、現 行の高炉法と比較してCO₂排出を50%以上削減を達成する技術を実証。

① 要素技術開発および小規模試験炉(実炉の1/250~1/150規模)での検証試験

※太字:幹事企業

② 中規模直接還元炉(実炉の1/25~1/5規模)試験による実証実験

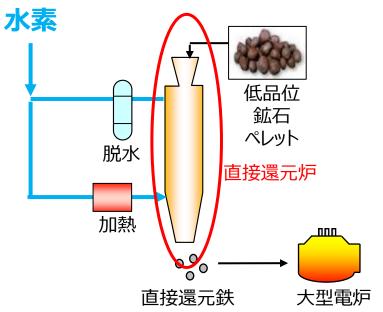
実施体制

日本製鉄株式会社、JFEスチール株式会社、

一般財団法人金属系材料研究開発センター

事業期間

2021年度~2030年度(10年間)


事業規模等

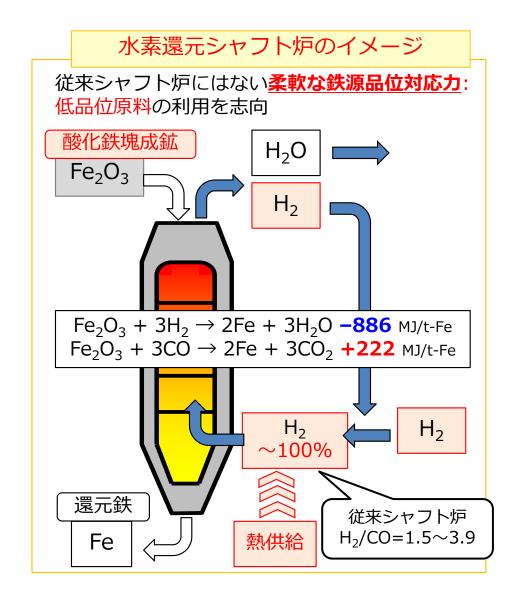
■ 事業規模(①+②) :約724億円

□ 支援規模(①+②) *:約345億円

*インセンティブ額を含む。今後ステージゲートで事業進捗などに応じて変更の可能性あり補助率など:①委託 → ②2/3補助(インセンティブ率は10%)

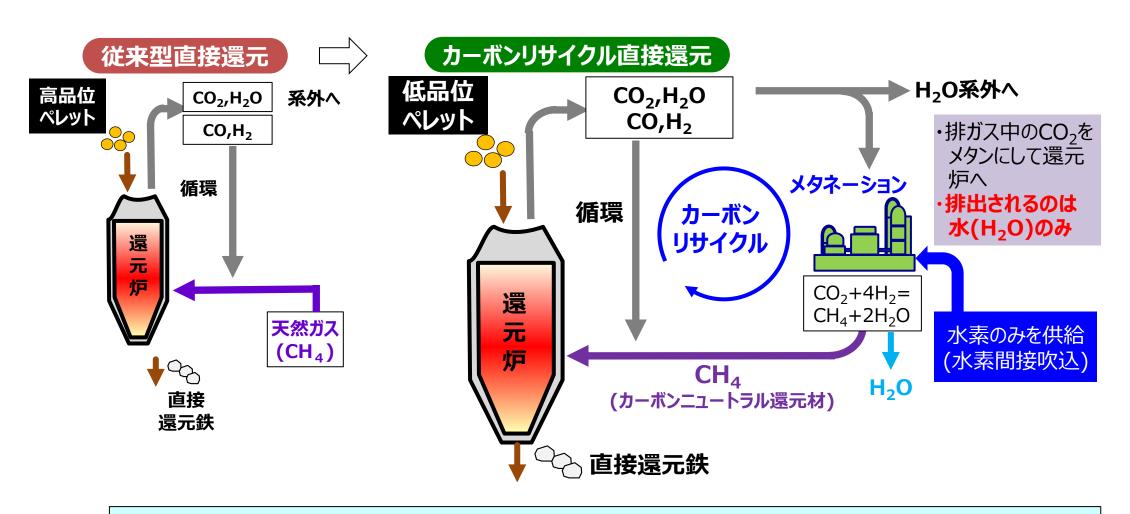
事業イメージ

16


(参考資料)本事業での取り組み【B-1】シャフト炉における水素直接還元技術

既存のシャフト炉プロセスとの比較

	既存 シャフト炉	水素還元 シャフト炉
還元材	天然ガス	水素
H ₂ 濃度	60~80%	~100%
熱供給	天然ガス・排ガ ス燃焼による還 元ガス温度制御	水素外部加熱等 による還元ガス 温度制御
原料	高品位 ペレット	低品位原料

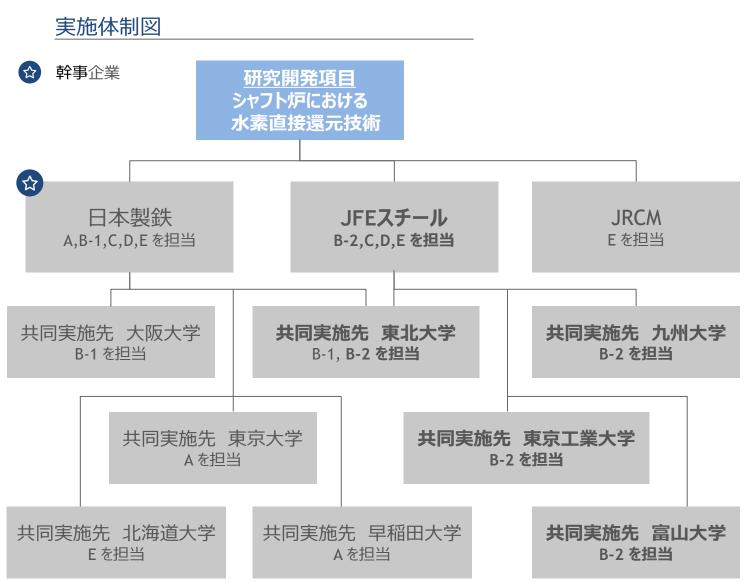

水素のみで酸化鉄を還元する技術開発にチャレンジ 低品位鉱石を利用できる水素還元プロセスを柱とした シャフト炉と電気炉の一貫操業製鉄技術の確立 ⇒資源自由度の拡大による競争力の確保

日本製鉄 波崎研究開発センターに小規模試験シャフト炉 (1t/hr)建設、2025年より試験開始予定

(参考資料)本事業での取り組み【B-2】カーボンリサイクル(CR)シャフト炉技術


メタネーション反応を利用して、カーボンをプロセス内で循環再利用することで、水素還元の課題を克服

東日本製鉄所千葉地区において小型ベンチ試験炉建設・2024年度試験開始予定


2. 研究開発計画/(3) 実施スケジュール

研究分野:シャフト炉における水素直接還元技術

2. 研究開発計画/(4) 研究開発体制

各主体の特長を生かせる研究開発実施体制と役割分担を構築

各主体の役割と連携方法

各主体の役割

- 研究開発項目全体の取りまとめは、日本製鉄が行う
- 日本製鉄は、A,B-1,C,D,Eを担当する
- JFEスチールは、B-2, C,D,Eを担当する
- JRCMは、Eを担当する
- 東北大学は、B-1, B-2を担当する
- 九州大学は、B-2を担当する
- 大阪大学は、B-1を担当する
- 東京大学は、Aを担当する
- 東京工業大学は、B-2を担当する
- 早稲田大学は、Aを担当する
- 富山大学は、B-2を担当する
- 北海道大学は、Eを担当する

研究開発における連携方法

- 定例打合せの実施
- 共通サンプル/試験装置を活用した研究開発連携
- テーマ間の連携会議を設定(①-1, ①-2, ②-1, ②-2)

2. 研究開発計画/(5)技術的優位性

国際的な競争の中においても技術等における優位性を保有

研究開発項目

シャフト炉における 水素直接還元技術

研究開発内容

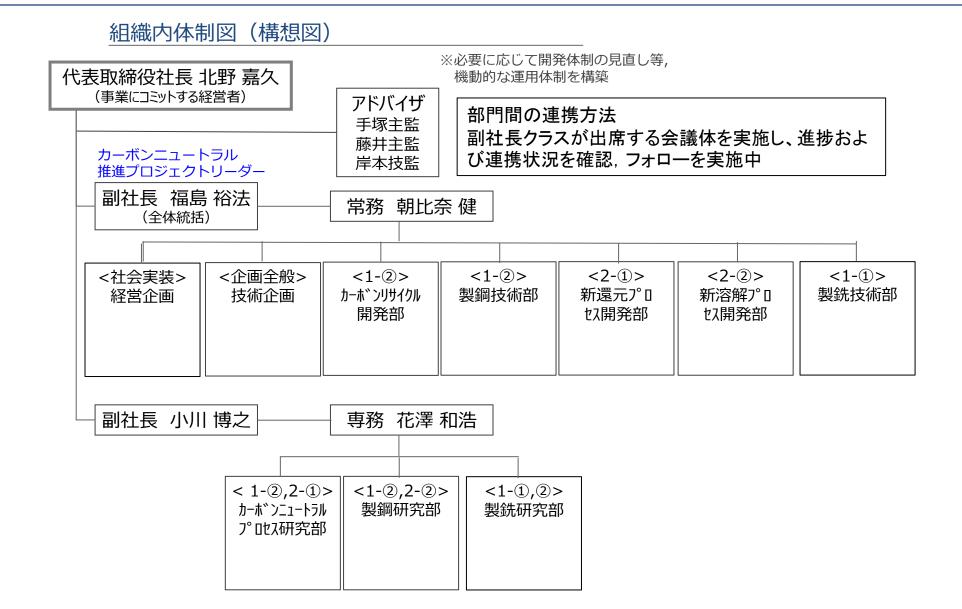
- 低品位原料を利用した 水素直接還元技術の 基礎検証
- A 低品位原料の利用技術 B 還元ガスの水素化技術 (水素還元/**カーボンリサイクル**)
- c プロセス検証・小規模プラント試験
- ユケールアップ検証・中型実証炉試験
- €全体プロセス評価

活用可能な技術等

- 低品位鉱石の評価、利用技術(焼結分野)
- 数値シミュレーション技術(高炉分野)
- 塊成鉱の水素還元技術(高炉-焼結分野)
- 塊成鉱の還元粉化抑制技術(高炉 焼結分野)
- 還元鉄の品質改善技術(高炉分野)
- 一貫製鉄のエネルギー評価技術
- 小規模試験機操業技術(試験高炉)
- 実機高炉操業技術(高炉分野)
- プロセス解析・エネルギー評価技術(高炉分野等)

競合他社に対する優位性

優位性


- 低品位鉱石(豪州、南米等)の評価、 利用技術を保有
- 世界最高水準の高級鋼ー貫製造技術を 保有。 今回開発技術によってグリーンス チールにおいても優位性を維持
- 世界最高のエネルギー効率

3. イノベーション推進体制

(経営のコミットメントを示すマネジメントシート)

3. イノベーション推進体制/(1)組織内の事業推進体制

経営者のコミットメントの下、専門部署に複数チームを設置

3. イノベーション推進体制/(2)マネジメントチェック項目① 経営者等の事業への関与

経営者等による「カーボンニュートラルの実現に向けた取り組み」への関与の方針

経営者等による具体的な施策・活動方針

経営者のリーダーシップ

気候変動問題への対応は事業継続の観点から極めて重要な経営課題であると認識 し、中期経営計画の最重要課題に掲げるともに、2050年カーボンニュートラルの実現 に向けた当社のロードマップを「JFEスチール カーボンニュートラル戦略説明会」として 社内外の幅広いステークホルダーに経営者自ら公表(2022年9月1日公表)

- ✓ 2030年 CO2削減▽30%に向けた取り組み
- ✓ イノベーションのための超革新技術開発
- ✓ CO2有効利用に向けた取り組み
- ✓ カーボンニュートラル実現に向けた社会との連携
- 事業のモニタリング・管理
 - 経営層主導による事業推進の仕組み

経営会議メンバーで構成されるカーボンニュートラル推進会議(計画:2回/年) を22年度は6回開催し、カーボンニュートラルに係る各組織・プロジェクトの重要 課題を一元的に審議し,方針決定を行った。

各テーマの進捗は、下記プロジェクト体制(会議体)でフォロー。

- ✓ CO2削減重点フォロープロジェクト(CO2削減進捗会議:2回/年) 計画通り、2回/年開催し、CO2削減重要案件の遅滞ない進捗を確認
- ✓ グリーンイノベーション/NEDO基金事業フォロープロジェクト

(GI/NEDO基金フォロー会議:1回/月)

計画通り、年12回開催し、基金事業に係る開発計画/予算立案をフォロー

社内外の幅広い意見の反映 (参考-2)

「GXリーグ基本構想」に賛同するとともに,「グリーン商材の付加価値付け検討WG」 に参画し、グリーン商材・低炭素商材の価値創生に関わる異種業界に共通する ルール策定に関する議論を開始。

- KPIの設定
- ✓「2024年度末のCO2排出量を2013年度比で18%以上削減」する目標を 確実に達成するための新指標を活用したCO2削減投資計画の策定
- ✓ 上記削減目標における省エネ・技術開発による削減に資する設備投資の うち90%を2022年度中に認可
- ✓ 2050年カーボンニュートラルを見据えた2030年度のCO2削減目標(30%以) 上)に向けたCO2削減計画を策定

経営者等の評価・報酬への反映

- 役員報酬の基本方針及び構成
- -社グループの持続的な成長に向けた健全なインセンティブとなるよう, 各取締 役および執行役員の役割、責務等に応じて基本報酬と業績に連動する報酬 (年次賞与、株式報酬) の割合を適切に設定
- -気候変動問題への取り組みを加速させるインセンティブとして、役員の業績 連動報酬に気候変動に関する指標を導入を決定

(2023年度より適用,業界初)

事業の継続性確保の取組

• 本事業の推進にあたり、代表取締役社長以下、代表取締役5名全員が 参画するカーボンニュートラル推進会議において、コンセンサス方式で事業戦 略の意思決定することで、継続性を担保。

3. イノベーション推進体制/(3)マネジメントチェック項目② 経営戦略における事業の位置づけ

経営戦略の中核に「カーボンニュートラルの実現に向けた取り組み」を位置づけ、広く情報発信

社内経営戦略としての位置付け

- カーボンニュートラルに向けた全社戦略
 - 2050年カーボンニュートラル達成に向けた課題を公表
 - <エコプロセス:鉄鋼製造プロセスの更なるエネルギー効率向上>
 - ✓2030年までをトランジション期と考え、低炭素鉄鋼プロセスへの転換を推進 (省JFEスチールカーボンニュートラル戦略エネ・高効率化,低炭素原燃料の活用,低炭素プロセス導入)
 - ✓2050年までをイノベーション期と定義し、超革新技術の確立・実装により、 カーボンニュートラルの達成を目指す
 - <エコプロダクト: 高機能鋼材の供給> (2023年5月22日, 8月23日 プレスリリース) 電磁鋼板製造設備の追加増強および印での合弁契約締結を公表
- 事業戦略・事業計画の決議・変更
 - 経営課題としての長期的な事業戦略ビジョン策定およびコミットメント JFEスチール経営会議および取締役会にて,2050年カーボンニュートラルの 実現に向けた長期ビジョンとしての研究開発計画を審議・決定。加えて, JFEホールディングスのグループ経営戦略会議でも審議し,取締役会で決議。
 - 定期的フォロー,見直しの機会 (21年度30決算 インベスターズMTG資料より) 3.(2)項に記載のグリーンイノベーション/NEDO基金フォロー会議にて開発状況をフォローするとともに,カーボンニュートラルに係る重要課題に対する方針,実行の意思決定を実施。また,本活動成果を踏まえ,2030年度のCO2削減目標を30%に引き上げることを決定し,2022年2月8日に公表。
 - 社内周知
 - 社内報等の媒体を通じて全社員への事業計画を周知。関連部署は上記会議体へ参画し、事業計画に基づき計画を推進。
- 決議事項と研究開発計画の関係
 - 事業戦略・事業計画の一部として研究開発計画を定義し最優先課題として付置付け

ステークホルダーに対する公表・説明

- 情報開示の方法
 - 2019年5月, TCFD提言への賛同を表明し, TCFDの理念を経営戦略に 反映し, TCFD提言に沿った情報開示を実施。
 - 統合報告書, CSR報告書において, TCFD等のフレームワークを活用し、 事業戦略・事業計画の内容を明示的に位置付け。
 - TCFDが提言している「シナリオ分析」を用いて気候変動問題に対する課題を特定するとともに、持続的な成長に向けた戦略として、7次中期経営計画において、JFEグループ環境経営ビジョン2050を策定し、2050年カーボンニュートラルに向けたプロセス開発のロードマップを公表。(2021年5月)
 - JFEスチール カーボンニュートラル戦略として,2030年CO2排出量削減30%,2050年カーボンニュートラルに向けた具体的取り組みを示し,グリーンな高品質鋼材の大量供給体制を世界で初めて実現することを目指す当社ビジョンを公表。(2023年11月)
- ステークホルダーへの説明 (21年度決算 インベスターズMTG資料より)
 - 上記の情報開示に加え、マスコミインタビューやニュースリリース、投資家向け説明会、株主通信や個別面談等を通じて、ステークホルダーへ事業の将来見通しやリスクを積極的に説明。
 - 「JFEスチールのGXへの挑戦」について動画を公開(22年6月20日)
 - 各四半期決算発表にて、カーボンニュートラルの実現に向けた取り組みの 最新の進捗を積極的に公表しステークホルダーへ説明。 (23年5月.8月)
 - 当社Webサイトのニュースリリースにおいて、エコプロセス、エコプロダクト等、 気候変動問題解決に資するトピックスを発信。(22年度実績:21件)

3. イノベーション推進体制/(4)マネジメントチェック項目③事業推進体制の確保

機動的に経営資源を投入し、着実に社会実装まで繋げられる組織体制を整備

経営資源の投入方針

- 実施体制の柔軟性の確保
 - 事業推進における柔軟性確保

提案にかかる事業は、実施技術・経済・社会等の面において不確実性が高い内容である。したがって、様々な超革新的技術開発には複線的にアプローチし、必要に応じ、体制や手法の見直しを実施。

また,責任者,チームリーダーへの権限移譲を行い,追加リソース投入等機動的な運用体制を構築する。

- 外部リソースの活用

2050年にカーボンニュートラルを実現する新技術の早期確立は個社単独では 困難である。したがって、他業界や研究機関等の連携も視野に入れ 積極的に外部リソースを活用し開発を推進。

- 人材・設備・資金の投入方針
 - 人的資源

本事業は,超革新的な技術開発への挑戦と位置付け,カーボンニュートラル推進プロジェクト体制を構築。適宜,社内横断的な検討チームやハード組織を新設し人材を投入。

- 資金投入方針 (22年度決算 インベスターズMTG資料より,参考-6) 2022年度は,「2024年度末のCO2排出量を2013年度比で18%以上削減」 する目標達成に向けた省エネ・技術開発による削減に資する設備投資の うち90%を2022年度中に認可。2022年度までに,約1,100億円を認可済み。
- 資金調達

GX戦略の推進を機動的かつ確実に実行し、持続的な利益成長を続けるためには、さらに強固な財務基盤の構築及び財務柔軟性の向上が必要と判断し、海外募集による新株式の発行及び自己株式の処分並びに転換社債型新株予約権付社債を発行

専門部署の設置

- 専門部署の設置
 - 2021年7月付けでカーボンリサイクル高炉およびCCUメタノール合成の要素技術開発等の推進を目的として「カーボンリサイクル開発部」を設置また,直接還元法に適した原料の開発およびCO2削減に資する外部鉄源の確保の推進を目的として,原料部に「グリーン原料室」を設置。
 - 2021年10月付けで直接還元鉄を活用した電気炉プロセス技術開発やスクラップ等の鉄源を溶解する新プロセスの研究開発の加速を図るべく「新溶解プロセス開発部」を設置。
 - 2022年1月付けで直接水素還元技術の研究開発の加速を図るべく 「新還元プロセス開発部」を設置。
 - 2023年5月付けで倉敷電気炉建設検討班を新設。具体的検討開始。
 - 2023年6月付けで電力/燃料の非化石化, CCUS活用の加速を図るべく, GXインフラ開発部を新設。
 - 経営会議メンバーで構成されるカーボンニュートラル推進会議を設置し、カーボンニュートラルに係る各組織・プロジェクトの重要課題を一元的に審議・決定し、迅速かつ効率的に推進する体制を構築。(2021年10月)

若手人材の育成

- 育成機会の創出

専門グループには若手人材を多く配置するとともに、関連する海外研究機関との交流を行い、中長期を見据えた育成機会を提供。

- 社外組織との連携

革新プロセスの開発にあたり設備仕様,スケールアップ,操業諸元の設計には,専門性の高いシミュレーション解析による検討が必要である。関連する学会,研究会のみならず,他分野とも連携し,当該解析技術を有する大学,研究機関の若手研究者と共同研究を推進。

4. その他

4. その他/(1) 想定されるリスク要因と対処方針

リスクに対して十分な対策を講じるが、自然災害等の事態に陥った場合には事業中止も検討

研究開発(技術)におけるリスクと対応

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- ⇒コンソーシアムメンバー会社で連携して対処する も解決策が見いだせない場合は開発を中止する。
- 開発技術を凌駕する新技術の出現
- ⇒将来のCNに対して社会実装までの期間やコスト 面において有効である場合は、中止も含めた検 討を行う。

社会実装(経済社会)におけるリスクと対応

- 安価でクリーンな水素の入手が困難となる
- ⇒開発は進めるが社会実装に関しては延期する。 なおコスト評価は継続して行い、社会実装の タイミングを見極める。
- 水素、電力価格が高く、かつグリーンスチールの評価が低く鋼材生産の収益性が見込まれない
- ⇒商品の価値を適正に価格に反映し受け止めて もらえるよう国、お客様に働きかける。

その他(自然災害等)のリスクと対応

- 自然災害(地震、津波等)による設備破損等のリスク
 - ⇒近年の風水害による被害や行政の ハザードマップ等の最新の情報に基づい た、対策の見直しを実施する。
- COVID-19の再拡大等のパンデミックにより、 開発に大幅な遅れが生じる場合
 ⇒全体スケジュールの再調整も含め検討 する。

事業中止の判断基準:

- ハードルの高い技術課題を解決できず開発目標を達成できない場合
- 開発技術を凌駕する新技術が出現し、将来のCNに対して社会実装までの期間やコスト面において有効である場合
- 水素、電力、バイオマスの価格が高く、かつグリーンスチールの評価が低く鋼材生産の収益性が見込まれず事業継続できなくなった場合
- 大規模震災等の自然災害により、事業の継続が困難となった場合